# APPENDIX E DATA VALIDATION PACKAGES

Client Sample ID: Top Soil

Lab Sample ID: 490-137586-1

Lab Name: TestAmerica Nashville

Job No.: 490-137586-1

SDG ID.:

Matrix: Solid

Date Sampled: 09/27/2017 16:30

Reporting Basis: DRY

Date Received: 09/28/2017 09:25

% Solids: 81.9

| CAS No.   | Analyte   | Result | RL    | MDL    | Units | С           | Q            | DIL | Method |
|-----------|-----------|--------|-------|--------|-------|-------------|--------------|-----|--------|
| 7429-90-5 | Aluminum  | 12100  | 5.81  | 2.33   | mg/Kg | 1           | <b>*</b>     | 1   | 6020A  |
| 7440-36-0 | Antimony  | 0.233  | 0.581 | 0.233  | mg/Kg | U           |              | 1   | 6020A  |
| 7440-38-2 | Arsenic   | 2.57   | 0.581 | 0.233  | mg/Kg |             | ·            | 1   | 6020A  |
| 7440-39-3 | Barium    | 79.7   | 0.581 | 0.233  | mg/Kg |             |              | 1   | 6020A  |
| 7440-41-7 | Beryllium | 0.451  | 0.581 | 0.233  | mg/Kg | <b>₹</b> 30 | >            | 1   | 6020A  |
| 7440-43-9 | Cadmium   | 0.233  | 0.581 | 0.233  | mg/Kg | Ū           |              | 1   | 6020A  |
| 7440-70-2 | Calcium   | 1890   | 58.1  | 29.1   | mg/Kg |             |              | 1   | 6020A  |
| 7440-47-3 | Chromium  | 16.8   | 0.581 | 0.233  | mg/Kg |             |              | 1   | 6020A  |
| 7440-48-4 | Cobalt    | 4.45   | 0.581 | 0.233  | mg/Kg |             |              | 1   | 6020A  |
| 7440-50-8 | Copper    | 4.35   | 0.581 | 0.233  | mg/Kg |             |              | 1   | 6020A  |
| 7439-89-6 | Iron      | 8860   | 5.81  | 2.33   | mg/Kg |             |              | 1   | 6020A  |
| 7439-92-1 | Lead      | 7.44   | 0.581 | 0.233  | mg/Kg |             |              | 1   | 6020A  |
| 7439-95-4 | Magnesium | 1330   | 58.1  | 29.1   | mg/Kg |             |              | 1   | 6020A  |
| 7439-96-5 | Manganese | 242    | 0.581 | 0.233  | mg/Kg |             |              | 1   | 6020A  |
| 7440-02-0 | Nickel    | 8.87   | 0.581 | 0.233  | mg/Kg |             |              | 1   | 6020A  |
| 7440-09-7 | Potassium | 1930   | 58.1  | 29.1   | mg/Kg |             |              | 1   | 6020A  |
| 7782-49-2 | Selenium  | 0.233  | 0.581 | 0.233  | mg/Kg | Ū           | <del> </del> | 1   | 6020A  |
| 7440-22-4 | Silver    | 0.116  | 0.581 | 0.116  | mg/Kg | Ū           | <del> </del> | 1   | 6020A  |
| 7440-23-5 | Sodium    | 155    | 58.1  | 29.1   | mg/Kg |             | <del> </del> | 1   | 6020A  |
| 7440-28-0 | Thallium  | 0.233  | 0.581 | 0.233  | mg/Kg | Ū           | <del> </del> | 1   | 6020A  |
| 7440-62-2 | Vanadium  | 19.8   | 0.581 | 0.233  | mg/Kg |             | 1            | 1   | 6020A  |
| 7440-66-6 | Zinc      | 26.4   | 5.81  | 2.33   | mg/Kg |             |              | 1   | 6020A  |
| 7439-97-6 | Mercury   | 0.0380 | 0.121 | 0.0363 | mq/Kq | 3 √ 3 €     | <b>\</b>     | 1   | 7471B  |



Client Sample ID: Backfill Lab Sample ID: 490-137586-2

Lab Name: TestAmerica Nashville Job No.: 490-137586-1

SDG ID.:

Matrix: Solid Date Sampled: 09/27/2017 16:35

Reporting Basis: DRY Date Received: 09/28/2017 09:25

% Solids: 88.0

| CAS No.   | Analyte   | Result | RL    | MDL    | Units | С    | Q  | DIL | Method |
|-----------|-----------|--------|-------|--------|-------|------|----|-----|--------|
| 7429-90-5 | Aluminum  | 11300  | 5.61  | 2.25   | mg/Kg |      | 18 | 1   | 6020A  |
| 7440-36-0 | Antimony  | 0.225  | 0.561 | 0.225  | mg/Kg | U    |    | 1   | 6020A  |
| 7440-38-2 | Arsenic   | 3.47   | 0.561 | 0.225  | mg/Kg |      |    | 1   | 6020A  |
| 7440-39-3 | Barium    | 66.7   | 0.561 | 0.225  | mg/Kg |      |    | ī   | 6020A  |
| 7440-41-7 | Beryllium | 0,404  | 0.561 | 0.225  | mg/Kg | J 31 | 9  | 1   | 6020A  |
| 7440-43-9 | Cadmium   | 0.225  | 0.561 | 0.225  | mg/Kg | U    | 7  | 1   | 6020A  |
| 7440-70-2 | Calcium   | 1300   | 56.1  | 28.1   | mg/Kg |      |    | 1   | 6020A  |
| 7440-47-3 | Chromium  | 14.0   | 0.561 | 0.225  | mg/Kg |      |    | 1   | 6020A  |
| 7440-48-4 | Cobalt    | 3.30   | 0.561 | 0.225  | mg/Kg |      |    | 1   | 6020A  |
| 7440-50-8 | Copper    | 3.17   | 0.561 | 0.225  | mg/Kg | 1    |    | 1   | 6020A  |
| 7439-89-6 | Iron      | 7230   | 5.61  | 2.25   | mg/Kg |      |    | 1   | 6020A  |
| 7439-92-1 | Lead      | 6.64   | 0.561 | 0.225  | mg/Kg |      |    | 1   | 6020A  |
| 7439-95-4 | Magnesium | 1140   | 56.1  | 28.1   | mg/Kg |      |    | 1   | 6020A  |
| 7439-96-5 | Manganese | 170    | 0.561 | 0.225  | mg/Kg |      |    | 1   | 6020A  |
| 7440-02-0 | Nickel    | 6.66   | 0.561 | 0.225  | mg/Kg |      |    | 1   | 6020A  |
| 7440-09-7 | Potassium | 1860   | 56.1  | 28.1   | mg/Kg |      |    | 1   | 6020A  |
| 7782-49-2 | Selenium  | 0.225  | 0.561 | 0.225  | mg/Kg | Ū    |    | 1   | 6020A  |
| 7440-22-4 | Silver    | 0.112  | 0.561 | 0.112  | mg/Kg | Ü    |    | 1   | 6020A  |
| 7440-23-5 | Sodium    | 99.4   | 56.1  | 28.1   | mg/Kg |      |    | 1   | 6020A  |
| 7440-28-0 | Thallium  | 0.225  | 0.561 | 0.225  | mg/Kg | Ü    |    | 1   | 6020A  |
| 7440-62-2 | Vanadium  | 17.7   | 0.561 | 0.225  | mg/Kg |      |    | 1   | 6020A  |
| 7440-66-6 | Zinc      | 25.6   | 5.61  | 2.25   | mg/Kg |      |    | 1   | 6020A  |
| 7439-97-6 | Mercury   | 0.149  | 0.113 | 0.0339 | mg/Kg |      |    | 1   | 7471B  |

& DRH

| Lab Name: TestAmerica Nashville | Job No.: 490-137586-1            |
|---------------------------------|----------------------------------|
| SDG No.:                        | ·                                |
| Client Sample ID: Top Soil      | Lab Sample ID: 490-137586-1      |
| Matrix: Solid                   | Lab File ID: 092817-024.D        |
| Analysis Method: 8270D SIM      | Date Collected: 09/27/2017 16:30 |
| Extract. Method: 3550C          | Date Extracted: 09/28/2017 11:27 |
| Sample wt/vol: 30.55(g)         | Date Analyzed: 09/28/2017 21:04  |
| Con. Extract Vol.: 1.00(mL)     | Dilution Factor: 1               |
| Injection Volume: 3(uL)         | Level: (low/med) Low             |
| % Moisture: 18.1                | GPC Cleanup: (Y/N) N             |
| Analysis Batch No · 463781      | Units: ma/Ka                     |

| CAS NO.  | COMPOUND NAME          | RESULT  | Q    | RL      | MDL     |
|----------|------------------------|---------|------|---------|---------|
| 83-32-9  | Acenaphthene           | 0.00264 | U    | 0.00396 | 0.00264 |
| 208-96-8 | Acenaphthylene         | 0.00216 | Ü    | 0.00396 | 0.00216 |
| 120-12-7 | Anthracene             | 0.00156 | Ü    | 0.00396 | 0.00156 |
| 56-55-3  | Benzo[a]anthracene     | 0.00156 | J 10 | 0.00396 | 0.00144 |
| 50-32-8  | Benzo[a]pyrene         | 0.00230 | 8 JQ | 0.00396 | 0.00156 |
| 205-99-2 | Benzo[b]fluoranthene   | 0.00400 |      | 0.00396 | 0.00264 |
| 191-24-2 | Benzo[g,h,i]perylene   | 0.00168 | Ū    | 0.00396 | 0.00168 |
| 207-08-9 | Benzo[k]fluoranthene   | 0.00216 | U    | 0.00396 | 0.00216 |
| 218-01-9 | Chrysene               | 0.00369 | 8 JQ | 0.00396 | 0.00144 |
| 53-70-3  | Dibenz(a,h)anthracene  | 0.00180 | Ū    | 0.00396 | 0.00180 |
| 206-44-0 | Fluoranthene           | 0.00288 | 8 JQ | 0.00396 | 0.00168 |
| 86-73-7  | fluorene               | 0.00420 | Ū    | 0.00600 | 0.00420 |
| 193-39-5 | Indeno[1,2,3-cd]pyrene | 0.00192 | Ū    | 0.00396 | 0.00192 |
| 91-20-3  | Naphthalene            | 0.00264 | Ū    | 0.00396 | 0.00264 |
| 85-01-8  | Phenanthrene           | 0.00204 | Ū    | 0.00396 | 0.00204 |
| 129-00-0 | Pyrene                 | 0.00372 | 2 20 | 0.00396 | 0.00180 |
| 91-57-6  | 2-Methylnaphthalene    | 0.00252 | U    | 0.00396 | 0.00252 |
| 90-12-0  | l-Methylnaphthalene    | 0.00216 | Ū    | 0.00396 | 0.00216 |

| CAS NO.   | SURROGATE               | %REC | Q | LIMITS |
|-----------|-------------------------|------|---|--------|
| 321-60-8  | 2-Fluorobiphenyl (Surr) | 64   |   | 29-120 |
| 4165-60-0 | Nitrobenzene-d5         | 54   |   | 27-120 |
| 1718-51-0 | Terphenyl-d14           | 60   |   | 13-120 |

ds 10/5/14

Lab Name: TestAmerica Nashville Job No.: 490-137586-1 SDG No.: Client Sample ID: Backfill Lab Sample ID: 490-137586-2 Matrix: Solid Lab File ID: 092817-025.D Analysis Method: 8270D SIM Date Collected: 09/27/2017 16:35 Extract. Method: 3550C Date Extracted: 09/28/2017 11:27 Sample wt/vol: 30.83(g) Date Analyzed: 09/28/2017 21:25 Con. Extract Vol.: 1.00(mL) Dilution Factor: 1 Injection.Volume: 3(uL) Level: (low/med) Low % Moisture: 12.0 GPC Cleanup: (Y/N) N Analysis Batch No.: 463781 Units: mg/Kg

| CAS NO.  | COMPOUND NAME          | RESULT  | Q      | RL      | MDL     |
|----------|------------------------|---------|--------|---------|---------|
| 83-32-9  | Acenaphthene           | 0.00243 | U      | 0.00365 | 0.00243 |
| 208-96-8 | Acenaphthylene         | 0.00199 | U      | 0.00365 | 0.00199 |
| 120-12-7 | Anthracene             | 0.00144 | U      | 0.00365 | 0.00144 |
| 56-55-3  | Benzo[a]anthracene     | 0.00327 | র এই   | 0.00365 | 0.00133 |
| 50-32-8  | Benzo[a]pyrene         | 0.00397 |        | 0.00365 | 0.00144 |
| 205-99-2 | Benzo[b]fluoranthene   | 0.00689 |        | 0.00365 | 0.00243 |
| 191-24-2 | Benzo[g,h,i]perylene   | 0.00218 | 350    | 0.00365 | 0.00155 |
| 207-08-9 | Benzo[k]fluoranthene   | 0.00267 | +JQ    | 0.00365 | 0.00199 |
| 218-01-9 | Chrysene               | 0.00555 | 29     | 0.00365 | 0.00133 |
| 53-70-3  | Dibenz(a,h)anthracene  | 0.00166 | Ū      | 0.00365 | 0.00166 |
| 206-44-0 | Fluoranthene           | 0.00692 |        | 0.00365 | 0.00155 |
| 86-73-7  | Fluorene               | 0.00387 | Ū      | 0.00553 | 0.00387 |
| 193-39-5 | Indeno[1,2,3-cd]pyrene | 0.00177 | U      | 0.00365 | 0.00177 |
| 91-20-3  | Naphthalene            | 0.00243 | U      | 0.00365 | 0.00243 |
| 85-01-8  | Phenanthrene           | 0.00273 | FIQ    | 0.00365 | 0.00188 |
| 129-00-0 | Pyrene                 | 0.00833 | + F= + | 0.00365 | 0.00166 |
| 91-57-6  | 2-Methylnaphthalene    | 0.00232 | U      | 0.00365 | 0.00232 |
| 90-12-0  | 1-Methylnaphthalene    | 0.00199 | U      | 0.00365 | 0.00199 |

| CAS NO.   | SURROGATE               | %REC | Q | LIMITS |
|-----------|-------------------------|------|---|--------|
| 321-60-8  | 2-Fluorobiphenyl (Surr) | 71   |   | 29-120 |
| 4165-60-0 | Nitrobenzene-d5         | 94   |   | 27-120 |
| 1718-51-0 | Terphenyl-d14           | 61   |   | 13-120 |

8 WAY

SDG No.:

Client Sample ID: WOR006-48-170928-56

Lab Sample ID: 490-137671-1

Matrix: Solid

Lab File ID: 092917-020.D

Analysis Method: 8270D SIM

Date Collected: 09/28/2017 16:30

Extract. Method: 3550C

Date Extracted: 09/29/2017 17:32

Sample wt/vol: 30.03(g) Date Analyzed: 09/29/2017 23:34

Con. Extract Vol.: 1.00(mL) Dilution Factor: 5

Injection Volume: 3(uL) Level: (low/med) Low

Lab Name: TestAmerica Nashville Job No.: 490-137671-1

% Moisture: 15.9 GPC Cleanup: (Y/N) N

Analysis Batch No.: 464267 Units: mg/Kg

| CAS NO.  | COMPOUND NAME          | RESULT  | Q       | RL       | MDL     |
|----------|------------------------|---------|---------|----------|---------|
| 83-32-9  | Acenaphthene           | 0.0271  | 45      | 0.0196   | 0.0131  |
| 208-96-8 | Acenaphthylene         | 0.0129  | 20H     | 0.0196   | 0.0107  |
| 120-12-7 | Anthracene             | 0.00772 | U 76 11 | 0.0196   | 0.00772 |
| 56-55-3  | Benzo[a]anthracene     | 0.00713 | U       | 0.0196   | 0.00713 |
| 50-32-8  | Benzo[a]pyrene         | 0.00772 | U       | 0.0196   | 0.00772 |
| 205-99-2 | Benzo[b]fluoranthene   | 0.0131  | U       | 0.0196   | 0.0131  |
| 191-24-2 | Benzo[g,h,i]perylene   | 0.00831 | U       | 0.0196   | 0.00831 |
| 207-08-9 | Benzo[k]fluoranthene   | 0.0107  | U       | 0.0196   | 0.0107  |
| 218-01-9 | Chrysene               | 0.00713 | U       | 0.0196   | 0.00713 |
| 53-70-3  | Dibenz(a,h)anthracene  | 0.00891 | U       | 0.0196   | 0.00891 |
| 206-44-0 | Fluoranthene           | 0.00986 | 2 det   | 0.0196   | 0.00831 |
| 86-73-7  | Fluorene               | 0.0208  | U       | 0.0297   | 0.0208  |
| 193-39-5 | Indeno[1,2,3-cd]pyrene | 0.00950 | U       | 0.0196   | 0.00950 |
| 91-20-3  | Naphthalene            | 0.0205  | TH      | 0.0196   | 0.0131  |
| 85-01-8  | Phenanthrene           | 0.0569  | JH J    | 0.0196   | 0.0101  |
| 129-00-0 | Pyrene                 | 0.0178  | र उठ्न  | 0.0196   | 0.00891 |
| 91-57-6  | 2-Methylnaphthalene    | 0.126   | PI JK   | 0.0196   | 0.0125  |
| 90-12-0  | 1-Methylnaphthalene    | 0.119   | PI JV   | _ 0.0196 | 0.0107  |

| CAS NO.   | SURROGATE               | %REC | Q | LIMITS |
|-----------|-------------------------|------|---|--------|
| 321-60-8  | 2-Fluorobiphenyl (Surr) | 121  | X | 29-120 |
| 4165-60-0 | Nitrobenzene-d5         | 129  | X | 27-120 |
| 1718-51-0 | Terphenyl-d14           | 92   |   | 13-120 |

de 10/10/R

Lab Name: TestAmerica Nashville Job No.: 490-137762-1 SDG No.: Client Sample ID: WOR006-010-48-170929-56 Lab Sample ID: 490-137762-1 Matrix: Solid Lab File ID: 100317-004.D Analysis Method: 8270D SIM Date Collected: 09/29/2017 16:35 Extract. Method: 3550C Date Extracted: 09/30/2017 16:38 Date Analyzed: 10/03/2017 09:39 Sample wt/vol: 30.31(g) Con. Extract Vol.: 1.00(mL) Dilution Factor: 5 Injection Volume: 3(uL) Level: (low/med) Low % Moisture: 13.8 GPC Cleanup: (Y/N) N Analysis Batch No.: 464885 Units: mg/Kg

| CAS NO.  | COMPOUND NAME          | RESULT  | Q     | RL     | MDL     |
|----------|------------------------|---------|-------|--------|---------|
| 83-32-9  | Acenaphthene           | 0.0453  | Pr JH | 0.0189 | 0.0126  |
| 208-96-8 | Acenaphthylene         | 0.0272  |       | 0.0189 | 0.0103  |
| 120-12-7 | Anthracene             | 0.00746 | Ü     | 0.0189 | 0.00746 |
| 56-55-3  | Benzo[a]anthracene     | 0.00689 | U     | 0.0189 | 0.00689 |
| 50-32-8  | Benzo[a]pyrene         | 0.00877 | 7 JQ  | 0.0189 | 0.00746 |
| 205-99-2 | Benzo[b]fluoranthene   | 0.0129  | 8 J Ø | 0.0189 | 0.0126  |
| 191-24-2 | Benzo[g,h,i]perylene   | 0.00803 | U "   | 0.0189 | 0.00803 |
| 207-08-9 | Benzo[k]fluoranthene   | 0.0103  | U     | 0.0189 | 0.0103  |
| 218-01-9 | Chrysene               | 0.0444  |       | 0.0189 | 0.00689 |
| 53-70-3  | Dibenz(a,h)anthracene  | 0.00861 | U ·   | 0.0189 | 0.00861 |
| 206-44-0 | Fluoranthene           | 0.0141  | F-10  | 0.0189 | 0.00803 |
| 86-73-7  | Fluorene               | 0.0201  | U EX  | 0.0287 | 0.0201  |
| 193-39-5 | Indeno[1,2,3-cd]pyrene | 0.00918 | U PI  | 0.0189 | 0.00918 |
| 91-20-3  | Naphthalene            | 0.0126  | U P1  | 0.0189 | 0.0126  |
| 85-01-8  | Phenanthrene           | 0.178   | EX 3H | 0.0189 | 0.00976 |
| 129-00-0 | Pyrene                 | 0.0422  |       | 0.0189 | 0.00861 |
| 91-57-6  | 2-Methylnaphthalene    | 0.621   | JL    | 0.0189 | 0.0121  |
| 90-12-0  | 1-Methylnaphthalene    | 0.431   | 75    | 0.0189 | 0.0103  |

| CAS NO.   | SURROGATE               | %REC | Q | LIMITS |
|-----------|-------------------------|------|---|--------|
| 321-60-8  | 2-Fluorobiphenyl (Surr) | 65   |   | 29-120 |
| 4165-60-0 | Nitrobenzene-d5         | 260  | Х | 27-120 |
| 1718-51-0 | Terphenyl-d14           | 70   |   | 13-120 |



| Lab Name: TestAmerica Nashville                  | Job No.: 490-137762-1            |
|--------------------------------------------------|----------------------------------|
| SDG No.:                                         |                                  |
| Client Sample ID: <u>WOR006-010-48-170929-57</u> | Lab Sample ID: 490-137762-2      |
| Matrix: Solid                                    | Lab File ID: 100317-007.D        |
| Analysis Method: 8270D SIM                       | Date Collected: 09/29/2017 16:40 |
| Extract. Method: 3550C                           | Date Extracted: 09/30/2017 16:38 |
| Sample wt/vol: 30.47(g)                          | Date Analyzed: 10/03/2017 10:39  |
| Con. Extract Vol.: 1.00(mL)                      | Dilution Factor: 5               |
| Injection Volume: 3(uL)                          | Level: (low/med) Low             |
| % Moisture: 14.2                                 | GPC Cleanup: (Y/N) N             |
| Analysis Batch No.: 464885                       | Units: mg/Kg                     |

| CAS NO.  | COMPOUND NAME          | RESULT  | Q                                     | RL     | MDL     |
|----------|------------------------|---------|---------------------------------------|--------|---------|
| 83-32-9  | Acenaphthene           | 0.159   |                                       | 0.0189 | 0.0126  |
| 208-96-8 | Acenaphthylene         | 0.0571  |                                       | 0.0189 | 0.0103  |
| 120-12-7 | Anthracene             | 0.00746 | U                                     | 0.0189 | 0.00746 |
| 56-55-3  | Benzo[a]anthracene     | 0.00688 | Ū                                     | 0.0189 | 0.00688 |
| 50-32-8  | Benzo[a]pyrene         | 0.0117  | - JO                                  | 0.0189 | 0.00746 |
| 205-99-2 | Benzo[b]fluoranthene   | 0.0189  | - JHC -                               | 0.0189 | 0.0126  |
| 191-24-2 | Benzo[g,h,i]perylene   | 0.0114  | I JOH                                 | 0.0189 | 0.00803 |
| 207-08-9 | Benzo[k]fluoranthene   | 0.0103  | # W                                   | 0.0189 | 0.0103  |
| 218-01-9 | Chrysene               | 0.00688 | U                                     | 0.0189 | 0.00688 |
| 53-70-3  | Dibenz(a,h)anthracene  | 0.00860 | - <del>""</del> VJ                    | 0.0189 | 0.00860 |
| 206-44-0 | Fluoranthene           | 0.0309  |                                       | 0.0189 | 0.00803 |
| 86-73-7  | Fluorene               | 0.0201  | U ·                                   | 0.0287 | 0.0201  |
| 193-39-5 | Indeno[1,2,3-cd]pyrene | 0.00980 |                                       | 0.0189 | 0.00918 |
| 91-20-3  | Naphthalene            | 0.0126  | U                                     | 0.0189 | 0.0126  |
| 85-01-8  | Phenanthrene           | 0.449   |                                       | 0.0189 | 0.00975 |
| 129-00-0 | Pyrene                 | 0.0650  | · · · · · · · · · · · · · · · · · · · | 0.0189 | 0.00860 |
| 91-57-6  | 2-Methylnaphthalene    | 1.63    |                                       | 0.0189 | 0.0120  |
| 90-12-0  | 1-Methylnaphthalene    | 1.27    |                                       | 0.0189 | 0.0103  |

| CAS NO.   | SURROGATE               | %REC | Q | LIMITS |
|-----------|-------------------------|------|---|--------|
| 321-60-8  | 2-Fluorobiphenyl (Surr) | 104  |   | 29-120 |
| 4165-60-0 | Nitrobenzene-d5         | 607  | X | 27-120 |
| 1718-51-0 | Terphenyl-d14           | 103  |   | 13-120 |



Client Sample ID: West-01 Lab Sample ID: 490-137889-3

Lab Name: TestAmerica Nashville Job No.: 490-137889-1

SDG ID.:

Matrix: Solid Date Sampled: 10/02/2017 14:10

Reporting Basis: DRY Date Received: 10/03/2017 10:05

% Solids: 98.5

| CAS No.   | Analyte   | Result | RL     | MDL    | Units | С            | Q ·      | DIL        | Method |
|-----------|-----------|--------|--------|--------|-------|--------------|----------|------------|--------|
| 7429-90-5 | Aluminum  | 1810   | 4.76   | 1.91   | mg/Kg | <u> </u>     |          | 1          | 6020A  |
| 7440-36-0 | Antimony  | 0.241  | 0.476  | 0.191  | mg/Kg | 18           | 2RV      | <u>R</u> 1 | 6020A  |
| 7440-38-2 | Arsenic   | 1.63   | 0.476  | 0.191  | mg/Kg |              |          | 1          | 6020A  |
| 7440-39-3 | Barium    | 20.7   | 0.476  | 0.191  | mg/Kg |              |          | 1          | 6020A  |
| 7440-41-7 | Beryllium | 0.191  | 0.476  | 0.191  | mg/Kg | U            |          | 1          | 6020A  |
| 7440-43-9 | Cadmium   | 0.191  | 0.476  | 0.191  | mg/Kg | Ū            |          | 1          | 6020A  |
| 7440-70-2 | Calcium   | 228    | 47.6   | 23.8   | mg/Kg |              |          | 1          | 6020A  |
| 7440-47-3 | Chromium  | 4.46   | 0.476  | 0.191  | mg/Kg |              |          | . 1        | 6020A  |
| 7440-48-4 | Cobalt    | 6.56   | 0.476  | 0.191  | mg/Kg |              |          | 1          | 6020A  |
| 7440-50-8 | Copper    | 3.96   | 0.476  | 0.191  | mg/Kg |              |          | 1          | 6020A  |
| 7439-89-6 | Iron      | 10500  | 4.76   | 1.91   | mg/Kg |              | 1º       | 1          | 6020A  |
| 7439-92-1 | Lead      | 11.5   | 0.476  | 0.191  | mg/Kg | <del> </del> | ĺ        | 1          | 6020A  |
| 7439-95-4 | Magnesium | 130    | 47.6   | 23.8   | mg/Kg |              |          | 1          | 6020A  |
| 7439-96-5 | Manganese | 1020   | 2.38   | 0.953  | mg/Kg | 7            |          | 5          | 6020A  |
| 7440-02-0 | Nickel    | 5.69   | 0.476  | 0.191  | mg/Kg |              |          | 1          | 6020A  |
| 7440-09-7 | Potassium | 181    | 47.6   | , 23.8 | mg/Kg |              |          | 1          | 6020A  |
| 7782-49-2 | Selenium  | 0.953  | 2.38   | 0.953  | mg/Kg | U            |          | 5          | 6020A  |
| 7440-22-4 | Silver    | 0.0953 | 0.476  | 0.0953 | mg/Kg | U            |          | 1          | 6020A  |
| 7440-23-5 | Sodium    | 68.8   | 47.6   | 23.8   | mg/Kg |              | <b>+</b> | 1          | 6020A  |
| 7440-28-0 | Thallium  | 0.191  | 0.476  | 0.191  | mg/Kg | Ü            |          | 1          | 6020A  |
| 7440-62-2 | Vanadium  | 10.2   | 0.476  | 0.191  | mg/Kg |              |          | 1          | 6020A  |
| 7440-66-6 | Zinc ·    | 43.6   | 23.8   | 9.53   | mg/Kg |              |          | 5          | 6020A  |
| 7439-97-6 | Mercury   | 0.0355 | 0.0975 | 0.0292 | mg/Kg | 7            | \$2      | 1          | 7471B  |



Client Sample ID: West-02

Lab Sample ID: 490-137889-4

Lab Name: TestAmerica Nashville

Job No.: 490-137889-1

SDG ID.:

Matrix: Solid

Date Sampled: 10/02/2017 14:20

Reporting Basis: DRY

Date Received: 10/03/2017 10:05

% Solids: 98.6

| CAS No.   | Analyte   | Result | RL    | MDL    | Units | С                                                | Q        | DIL             | Method |
|-----------|-----------|--------|-------|--------|-------|--------------------------------------------------|----------|-----------------|--------|
| 7429-90-5 | Aluminum  | 3480   | 5.07  | 2.03   | mg/Kg |                                                  | <u> </u> | 1               | 6020A  |
| 7440-36-0 | Antimony  | 0.300  | 0.507 | 0.203  | mg/Kg | 7                                                | TA       | υ8 <sup>1</sup> | 6020A  |
| 7440-38-2 | Arsenic   | 2.19   | 0.507 | 0.203  | mg/Kg |                                                  |          | 1               | 6020A  |
| 7440-39-3 | Barium    | 35.3   | 0.507 | 0.203  | mg/Kg |                                                  |          | 1               | 6020A  |
| 7440-41-7 | Beryllium | 0.214  | 0.507 | 0.203  | mg/Kg | JE .                                             | 10       | 1               | 6020A  |
| 7440-43-9 | Cadmium   | 0.253  | 0.507 | 0.203  | mg/Kg | ستر                                              | 10       | 1               | 6020A  |
| 7440-70-2 | Calcium   | 1010   | 50.7  | 25.4   | mg/Kg | <u> </u>                                         | 7        | 1               | 6020A  |
| 7440-47-3 | Chromium  | 5.74   | 0.507 | 0.203  | mg/Kg |                                                  |          | 1               | 6020A  |
| 7440-48-4 | Cobalt    | 2.36   | 0.507 | 0.203  | mg/Kg |                                                  |          | 1               | 6020A  |
| 7440-50-8 | Copper    | 4.53   | 0.507 | 0.203  | mg/Kg |                                                  |          | 1               | 6020A  |
| 7439-89-6 | Iron      | 7690   | 5.07  | 2.03   | mg/Kg | <u> </u>                                         | 1        | 1               | 6020A  |
| 7439-92-1 | Lead .    | 36.9   | 0.507 | 0.203  | mg/Kg | <del>                                     </del> |          | 1               | 6020A  |
| 7439-95-4 | Magnesium | 431    | 50.7  | 25.4   | mg/Kg |                                                  | 1        | 1               | 6020A  |
| 7439-96-5 | Manganese | 90.5   | 0.507 | 0.203  | mg/Kg | <del> </del>                                     |          | 1               | 6020A  |
| 7440-02-0 | Nickel    | 3.80   | 0.507 | 0.203  | mg/Kg | -                                                | 1        | 1               | 6020A  |
| 7440-09-7 | Potassium | 337    | 50.7  | 25.4   | mg/Kg | · ·                                              | 1        | 1               | 6020A  |
| 7782-49-2 | Selenium  | 0.337  | 0.507 | 0.203  | mg/Kg | 18                                               | JQ       | 1               | 6020A  |
| 7440-22-4 | Silver    | 0.101  | 0.507 | 0.101  | mg/Kg | υ                                                | 194      | 1               | 6020A  |
| 7440-23-5 | Sodium    | 736    | 50.7  | 25.4   | mg/Kg | <u> </u>                                         | **       | 1               | 6020A  |
| 7440-28-0 | Thallium  | 0.203  | 0.507 | 0.203  | mg/Kg | υ                                                | T        | 1               | 6020A  |
| 7440-62-2 | Vanadium  | 14.7   | 0.507 | 0.203  | mg/Kg |                                                  |          | 1               | 6020A  |
| 7440-66-6 | Zinc      | 31.9   | 5.07  | 2.03   | mg/Kg |                                                  |          | 1               | 6020A  |
| 7439-97-6 | Mercury   | 0.0385 | 0.100 | 0.0301 | mq/Kg | <u> </u>                                         | JQ       | 1               | 7471B  |

& popula

Client Sample ID: North

Lab Sample ID: 490-137889-5

Lab Name: TestAmerica Nashville

Job No.: 490-137889-1

SDG ID.:

Matrix: Solid

Date Sampled: 10/02/2017 14:30

Reporting Basis: DRY

Date Received: 10/03/2017 10:05

% Solids: 98.4

| CAS No.   | Analyte   | Result | RL    | MDL    | Units | С                                       | Q            | DIL         | Method |
|-----------|-----------|--------|-------|--------|-------|-----------------------------------------|--------------|-------------|--------|
| 7429-90-5 | Aluminum  | 2000   | 4.98  | 1.99   | mg/Kg |                                         | <del></del>  | 1           | 6020A  |
| 7440-36-0 | Antimony  | 0.314  | 0.498 | 0.199  | mg/Kg | متز                                     | 10           | <b>UB</b> 1 | 6020A  |
| 7440-38-2 | Arsenic'  | 1.41   | 0.498 | 0.199  | mg/Kg | 1                                       | 1            | 1           | 6020A  |
| 7440-39-3 | Barium    | 28.1   | 0.498 | 0.199  | mg/Kg | ·   · · · · · · · · · · · · · · · · · · | <del></del>  | 1           | 6020A  |
| 7440-41-7 | Beryllium | 0.199  | 0.498 | 0.199  | mg/Kg | Ū                                       |              | 1           | 6020A  |
| 7440-43-9 | Cadmium   | 0.199  | 0.498 | 0.199  | mg/Kg | U                                       |              | 1           | 6020A  |
| 7440-70-2 | Calcium   | 281    | 49.8  | 24.9   | mg/Kg |                                         |              | 1           | 6020A  |
| 7440-47-3 | Chromium  | 4.13   | 0.498 | 0.199  | mg/Kg |                                         |              | 1           | 6020A  |
| 7440-48-4 | Cobalt    | 1.14   | 0.498 | 0.199  | mg/Kg |                                         | T            | 1           | 6020A  |
| 7440-50-8 | Copper    | 2.71   | 0.498 | 0.199  | mg/Kg | 1                                       |              | 1           | 6020A  |
| 7439-89-6 | Iron      | 5260   | 4.98  | 1.99   | mg/Kg |                                         | B            | 1           | 6020A  |
| 7439-92-1 | Lead      | 24.9   | 0.498 | 0.199  | mg/Kg | <b>†</b>                                |              | 1           | 6020A  |
| 7439-95-4 | Magnesium | 203    | 49.8  | 24.9   | mg/Kg | <del></del>                             |              | 1           | 6020A  |
| 7439-96-5 | Manganese | 42.2   | 0.498 | 0.199  | mg/Kg | 1                                       |              | 1           | 6020A  |
| 7440-02-0 | Nickel    | 2.13   | 0.498 | 0.199  | mg/Kg |                                         |              | 1           | 6020A  |
| 7440-09-7 | Potassium | 198    | 49.8  | 24.9   | mg/Kg |                                         |              | 1           | 6020A  |
| 7782-49-2 | Selenium  | 0.218  | 0.498 | 0.199  | mg/Kg | ستنيد                                   | JO           | 1           | 6020A  |
| 7440-22-4 | Silver    | 0.0996 | 0.498 | 0.0996 | mg/Kg | Ū                                       | -4           | 1           | 6020A  |
| 7440-23-5 | Sodium    | 24.9   | 4,9.8 | 24.9   | mg/Kg | <u>"</u>                                | +            | 1           | 6020A  |
| 7440-28-0 | Thallium  | 0.199  | 0.498 | 0.199  | mg/Kg | Ū                                       | <del> </del> | 1           | 6020A  |
| 7440-62-2 | Vanadium  | 10.0   | 0.498 | 0.199  | mg/Kg | <del> </del>                            | <del> </del> | 1           | 6020A  |
| 7440-66-6 | Zinc      | 16.2   | 4.98  | 1.99   | mg/Kg | <del> </del>                            | <del> </del> | 1           | 6020A  |
| 7439-97-6 | Mercury   | 0.0482 | 0.100 | 0.0301 | mq/Kq | J.J.                                    | 20           | 1           | 7471B  |

& MMA

Client Sample ID: South

Lab Sample ID: 490-137889-6

Lab Name: TestAmerica Nashville

Job No.: 490-137889-1

SDG ID.:

Matrix: Solid

Date Sampled: 10/02/2017 14:45

Reporting Basis: DRY

Date Received: 10/03/2017 10:05

% Solids: 97.8

| CAS No.   | Analyte   | Result | RL    | MDL    | Units | , C -    | Q                                                | DIL                                              | Method |
|-----------|-----------|--------|-------|--------|-------|----------|--------------------------------------------------|--------------------------------------------------|--------|
| 7429-90-5 | Aluminum  | 3610   | 5.09  | 2.04   | mg/Kg |          |                                                  | 1                                                | 6020A  |
| 7440-36-0 | Antimony  | 0.351  | 0.509 | 0.204  | mg/Kg | J.F.     | JA                                               | UB 1                                             | 6020A  |
| 7440-38-2 | Arsenic   | 2.53   | 0.509 | 0.204  | mg/Kg | 1        | -                                                | 1                                                | 6020A  |
| 7440-39-3 | Barium    | 71.1   | 0.509 | 0.204  | mg/Kg |          |                                                  | 1                                                | 6020A  |
| 7440-41-7 | Beryllium | 0.252  | 0.509 | 0.204  | mg/Kg | -0       | JO                                               | 1                                                | 6020A  |
| 7440-43-9 | Cadmium   | 0.212  | 0.509 | 0.204  | mg/Kg | J.J.     | 20                                               | 1                                                | 6020A  |
| 7440-70-2 | Calcium   | 425    | 50.9  | 25.4   | mg/Kg | <u> </u> | 135                                              | 1                                                | 6020A  |
| 7440-47-3 | Chromium  | 6.05   | 0.509 | 0.204  | mg/Kg |          |                                                  | . 1                                              | 6020A  |
| 7440-48-4 | Cobalt    | 2.18   | 0.509 | 0.204  | mg/Kg |          |                                                  | 1                                                | 6020A  |
| 7440-50-8 | Copper    | 4.97   | 0.509 | 0.204  | mg/Kg |          | <u> </u>                                         | 1                                                | 6020A  |
| 7439-89-6 | Iron      | 10500  | 5.09  | 2.04   | mg/Kg |          | <b>X</b> .                                       | 1                                                | 6020Å  |
| 7439-92-1 | Lead      | 36.4   | 0.509 | 0.204  | mg/Kg |          |                                                  | 1                                                | 6020A  |
| 7439-95-4 | Magnesium | 302    | 50.9  | 25.4   | mg/Kg | 1        | <del>                                     </del> | 1                                                | 6020A  |
| 7439-96-5 | Manganese | 53.7   | 0.509 | 0.204  | mg/Kg |          | 1                                                | 1                                                | 6020A  |
| 7440-02-0 | Nickel    | 3.07   | 0.509 | 0.204  | mg/Kg |          |                                                  | 1                                                | 6020A  |
| 7440-09-7 | Potassium | 358    | 50.9  | 25.4   | mg/Kg |          |                                                  | 1                                                | 6020A  |
| 7782-49-2 | Selenium  | 0.373  | 0.509 | 0.204  | mg/Kg | -Ja-     | 10                                               | 1.                                               | 6020A  |
| 7440-22-4 | Silver    | 0.102  | 0.509 | 0.102  | mg/Kg | Ü        | act                                              | 1                                                | 6020A  |
| 7440-23-5 | Sodium    | 25.4   | 50.9  | 25.4   | mg/Kg | U        | <del>                                     </del> | 1                                                | 6020A  |
| 7440-28-0 | Thallium  | 0.204  | 0.509 | 0.204  | mg/Kg | U        | 1                                                | 1                                                | 6020A  |
| 7440-62-2 | Vanadium  | 13.2   | 0.509 | 0.204  | mg/Kg | 1        | +                                                | 1                                                | 6020A  |
| 7440-66-6 | Zinc      | 20.6   | 5.09  | 2.04   | mg/Kg |          | 1                                                | 1                                                | 6020A  |
| 7439-97-6 | Mercury   | 0.0539 | 0.100 | 0.0301 | mq/Kq | -        | JQ                                               | <del>                                     </del> | 7471B  |

& lobyles

| Lab Name: <u>TestAmerica Nashville</u>    | Job No.: 490-137889-1            |
|-------------------------------------------|----------------------------------|
| SDG No.:                                  |                                  |
| Client Sample ID: WOR006-012-36-171002-56 | Lab Sample ID: 490-137889-1      |
| Matrix: Solid                             | Lab File ID: 100317-025.D        |
| Analysis Method: 8270D SIM                | Date Collected: 10/02/2017 08:00 |
| Extract. Method: 3550C                    | Date Extracted: 10/03/2017 12:54 |
| Sample wt/vol: 30.35(g)                   | Date Analyzed: 10/03/2017 17:26  |
| Con. Extract Vol.: 1.00(mL)               | Dilution Factor: 10              |
| Injection Volume: 3(uL)                   | Level: (low/med) Low             |
|                                           |                                  |

% Moisture: 9.9 GPC Cleanup:(Y/N) NAnalysis Batch No.: 464885 Units: mg/Kg

| ·        |                     |        |   |        |        |
|----------|---------------------|--------|---|--------|--------|
| CAS NO.  | COMPOUND NAME       | RESULT | Q | RL     | MDL    |
| 86-73-7  | Fluorene            | 0.308  |   | 0.0549 | 0.0384 |
| 208-96-8 | Acenaphthylene      | 0.0198 | U | 0.0362 | 0.0198 |
| 85-01-8  | Phenanthrene        | 0.644  |   | 0.0362 | 0.0187 |
| 120-12-7 | Anthracene          | 0.0143 | U | 0.0362 | 0.0143 |
| 91-57-6  | 2-Methylnaphthalene | 1.60   |   | 0.0362 | 0.0230 |
| 129-00-0 | Pyrene              | 0.364  |   | 0.0362 | 0.0165 |
| 91-20-3  | Naphthalene         | 0.269  |   | 0.0362 | 0.0241 |
| 206-44-0 | Fluoranthene        | 0.0889 |   | 0.0362 | 0.0154 |
| 90-12-0  | 1-Methylnaphthalene | 0.983  |   | 0.0362 | 0.0198 |
| 56-55-3  | Benzo[a]anthracene  | 0.148  |   | 0.0362 | 0.0132 |
| 218-01-9 | Chrysene            | 0.335  |   | 0.0362 | 0.0132 |
| 83-32-9  | Acenaphthene        | 0.228  |   | 0.0362 | 0.0241 |
|          |                     |        |   |        |        |

| CAS NO.   | SURROGATE               | %REC | Q | LIMITS |
|-----------|-------------------------|------|---|--------|
| 321-60-8  | 2-Fluorobiphenyl (Surr) | 109  |   | 29-120 |
| 4165-60-0 | Nitrobenzene-d5         | 247  | Х | 27-120 |
| 1718-51-0 | Terphenyl-d14           | 85   |   | 13-120 |

FORM I 8270D SIM

of phila

Page 325 of 1022

Lab Name: TestAmerica Nashville Job No.: 490-137889-1 SDG No.: Client Sample ID: WOR006-012-36-171002-56 Lab Sample ID: 490-137889-1 Matrix: Solid Lab File ID: 100417-004.D Analysis Method: 8270D SIM Date Collected: 10/02/2017 08:00 Extract. Method: 3550C Date Extracted: 10/03/2017 12:54 Sample wt/vol: 30.35(g) Date Analyzed: 10/04/2017 10:26 Dilution Factor: 25 Con. Extract Vol.: 1.00(mL) Injection Volume: 3(uL) Level: (low/med) Low % Moisture: 9.9 GPC Cleanup: (Y/N) N Analysis Batch No.: 465270 Units: mg/Kg

| CAS NO.  | COMPOUND NAME          | RESULT | Q   | RL     | MDL    |
|----------|------------------------|--------|-----|--------|--------|
| 50-32-8  | Benzo[a]pyrene         | 0.0934 |     | 0.0905 | 0.0357 |
| 191-24-2 | Benzo[g,h,i]perylene   | 0.0541 | JOD | 0.0905 | 0.0384 |
| 207-08-9 | Benzo[k]fluoranthene   | 0.0494 | U   | 0.0905 | 0.0494 |
| 53-70-3  | Dibenz(a,h)anthracene  | 0.0412 | Ü   | 0.0905 | 0.0412 |
| 193-39-5 | Indeno[1,2,3-cd]pyrene | 0.0439 | U.  | 0.0905 | 0.0439 |
| 205-99-2 | Benzo[b]fluoranthene   | 0.146  |     | 0.0905 | 0.0604 |

à phyra

Lab Name: TestAmerica Nashville

SDG No.:

Client Sample ID: WOR006-011-36-171002-56

Lab Sample ID: 490-137889-2

Matrix: Solid

Lab File ID: 100317-026.D

Analysis Method: 8270D SIM

Date Collected: 10/02/2017 08:20

Extract. Method: 3550C

Date Extracted: 10/03/2017 12:54

Sample wt/vol: 30.05(g)

Date Analyzed: 10/03/2017 17:46

Con. Extract Vol.: 1.00(mL)

Dilution Factor: 10

Injection Volume: 3(uL) Level: (low/med) Low

% Moisture: 12.3 GPC Cleanup: (Y/N) N

Analysis Batch No.: 464885 Units: mg/Kg

| CAS NO.  | COMPOUND NAME       | RESULT | Q | RL     | MDL    |
|----------|---------------------|--------|---|--------|--------|
| 86-73-7  | Fluorene            | 0.141  |   | 0.0569 | 0.0398 |
| 208-96-8 | Acenaphthylene      | 0.0205 | Ü | 0.0376 | 0.0205 |
| 85-01-8  | Phenanthrene        | 0.316  |   | 0.0376 | 0.0193 |
| 120-12-7 | Anthracene          | 0.0148 | Ū | 0.0376 | 0.0148 |
| 91-57-6  | 2-Methylnaphthalene | 0.158  |   | 0.0376 | 0.0239 |
| 129-00-0 | Pyrene              | 0.179  |   | 0.0376 | 0.0171 |
| 91-20-3  | Naphthalene         | 0.0250 | U | 0.0376 | 0.0250 |
| 206-44-0 | Fluoranthene        | 0.0658 |   | 0.0376 | 0.0159 |
| 90-12-0  | 1-Methylnaphthalene | 0.145  |   | 0.0376 | 0.0205 |
| 56-55-3  | Benzo[a]anthracene  | 0.0638 |   | 0.0376 | 0.0137 |
| 218-01-9 | Chrysene            | 0.226  |   | 0.0376 | 0.0137 |
| 83-32-9  | Acenaphthene        | 0.0250 | U | 0.0376 | 0.0250 |

| CAS NO.   | SURROGATE               | %REC | Q | LIMITS |
|-----------|-------------------------|------|---|--------|
| 321-60-8  | 2-Fluorobiphenyl (Surr) | 97   |   | 29-120 |
| 4165-60-0 | Nitrobenzene-d5         | 255  | Х | 27-120 |
| 1718-51-0 | Terphenyl-d14           | 95   |   | 13-120 |

& phylia

Lab Name: TestAmerica Nashville Job No.: 490-137889-1 SDG No.: Client Sample ID: WOR006-011-36-171002-56 Lab Sample ID: 490-137889-2 Matrix: Solid Lab File ID: 100417-005.D Analysis Method: 8270D SIM Date Collected: 10/02/2017 08:20 Extract. Method: 3550C Date Extracted: 10/03/2017 12:54 Sample wt/vol: 30.05(g) Date Analyzed: 10/04/2017 10:46 Con. Extract Vol.: 1.00(mL) Dilution Factor: 25 Injection Volume: 3(uL) Level: (low/med) Low % Moisture: 12.3 GPC Cleanup: (Y/N) N Units: mg/Kg Analysis Batch No.: 465270

| CAS NO.  | COMPOUND NAME          | RESULT | Q    | RL     | MDL    |
|----------|------------------------|--------|------|--------|--------|
| 50-32-8  | Benzo[a]pyrene         | 0.0370 | U    | 0.0939 | 0.0370 |
| 191-24-2 | Benzo[g,h,i]perylene   | 0.0398 | U    | 0.0939 | 0.0398 |
| 207-08-9 | Benzo[k]fluoranthene   | 0.0512 | U    | 0.0939 | 0.0512 |
| 53-70-3  | Dibenz(a,h)anthracene  | 0.0427 | U    | 0.0939 | 0.0427 |
| 193-39-5 | Indeno[1,2,3-cd]pyrene | 0.0455 | U    | 0.0939 | 0.0455 |
| 205-99-2 | Benzo[b]fluoranthene   | 0.0739 | F.70 | 0.0939 | 0.0626 |

Splaka Splaka

| Lab Name: TestAmerica Nashville | Job No.: 490-137889-1            |
|---------------------------------|----------------------------------|
| SDG No.:                        |                                  |
| Client Sample ID: West-01       | Lab Sample ID: 490-137889-3      |
| Matrix: Solid                   | Lab File ID: 100317-027.D        |
| Analysis Method: 8270D SIM      | Date Collected: 10/02/2017 14:10 |
| Extract. Method: 3550C          | Date Extracted: 10/03/2017 12:54 |
| Sample wt/vol:.30.11(g)         | Date Analyzed: 10/03/2017 18:06  |
| Con. Extract Vol.: 1.00(mL)     | Dilution Factor: 10              |
| Injection Volume: 3(uL)         | Level: (low/med) Low             |
| % Moisture: 1.5                 | GPC Cleanup: (Y/N) N             |
| Analysis Batch No. 464885       | Units: ma/Ka                     |

| CAS NO.  | COMPOUND NAME          | RESULT | Q    | RL     | MDL    |
|----------|------------------------|--------|------|--------|--------|
| 50-32-8  | Benzo[a]pyrene         | 0.118  | / JH | 0.0334 | 0.0132 |
| 86-73-7  | Fluorene               | 0.0474 | JQ2  | 0.0506 | 0.0354 |
| 208-96-8 | Acenaphthylene         | 0.0182 | U    | 0.0334 | 0.0182 |
| 191-24-2 | Benzo[g,h,i]perylene   | 0.132  | ~ JH | 0.0334 | 0.0142 |
| 85-01-8  | Phenanthrene           | 0.386  |      | 0.0334 | 0.0172 |
| 207-08-9 | Benzo[k]fluoranthene   | 0.0335 | - JH | 0.0334 | 0.0182 |
| 120-12-7 | Anthracene             | 0.0132 | U    | 0.0334 | 0.0132 |
| 91-57-6  | 2-Methylnaphthalene    | 0.0655 |      | 0.0334 | 0.0212 |
| 129-00-0 | Pyrene                 | 0.315  |      | 0.0334 | 0.0152 |
| 53-70-3  | Dibenz(a,h)anthracene  | 0.0466 | ~ JH | 0.0334 | 0.0152 |
| 91-20-3  | Naphthalene            | 0.0223 | U    | 0.0334 | 0.0223 |
| 206-44-0 | Fluoranthene           | 0.0547 |      | 0.0334 | 0.0142 |
| 90-12-0  | 1-Methylnaphthalene    | 0.0182 | Ū    | 0.0334 | 0.0182 |
| 56-55-3  | Benzo[a]anthracene     | 0.124  |      | 0.0334 | 0.0121 |
| 193-39-5 | Indeno[1,2,3-cd]pyrene | 0.106  | -JU  | 0.0334 | 0.0162 |
| 218-01-9 | Chrysene               | 0.396  |      | 0.0334 | 0.0121 |
| 83-32-9  | Acenaphthene           | 0.0223 | U    | 0.0334 | 0.0223 |
| 205-99-2 | Benzo[b]fluoranthene   | 0.144  | 45~  | 0.0334 | 0.0223 |

| CAS NO.   | SURROGATE               | %REC | Q | LIMITS |
|-----------|-------------------------|------|---|--------|
| 321-60-8  | 2-Fluorobiphenyl (Surr) | 19   | Х | 29-120 |
| 4165-60-0 | Nitrobenzene-d5         | 32   |   | 27-120 |
| 1718-51-0 | Terphenyl-d14           | 15   |   | 13-120 |



| Lab Name: TestAmerica Nashville | Job No.: 490-137889-1            |
|---------------------------------|----------------------------------|
| SDG No.:                        |                                  |
| Client Sample ID: West-02       | Lab Sample ID: 490-137889-4      |
| Matrix: Solid                   | Lab File ID: 100317-028.D        |
| Analysis Method: 8270D SIM      | Date Collected: 10/02/2017 14:20 |
| Extract. Method: 3550C          | Date Extracted: 10/03/2017 12:54 |
| Sample wt/vol: 30.15(g)         | Date Analyzed: 10/03/2017 18:26  |
| Con. Extract Vol.: 1.00(mL)     | Dilution Factor: 10              |
| Injection Volume: 3(uL)         | Level: (low/med) Low             |
| % Moisture: 1.4.                | GPC Cleanup: (Y/N) N             |
| Analysis Batch No.: 464885      | Units: mg/Kg                     |

| CAS NO.  | COMPOUND NAME          | RESULT | Q           | RL     | MDL    |
|----------|------------------------|--------|-------------|--------|--------|
| 50-32-8  | Benzo[a]pyrene         | 0.0731 | <b>-</b> JH | 0.0333 | 0.0131 |
| 86-73-7  | Fluorene               | 0.0353 | U           | 0.0505 | 0.0353 |
| 208-96-8 | Acenaphthylene         | 0.0247 | 270         | 0.0333 | 0.0182 |
| 191-24-2 | Benzo[g,h,i]perylene   | 0.136  | * JH        | 0.0333 | 0.0141 |
| 85-01-8  | Phenanthrene           | 0.0318 | 7 JQ        | 0.0333 | 0.0172 |
| 207-08-9 | Benzo[k]fluoranthene   | 0.0395 | " JA        | 0.0333 | 0.0182 |
| 120-12-7 | Anthracene             | 0.0131 | U           | 0.0333 | 0.0131 |
| 91-57-6  | 2-Methylnaphthalene    | 0.0212 | Ü           | 0.0333 | 0.0212 |
| 129-00-0 | Pyrene                 | 0.0959 |             | 0.0333 | 0.0151 |
| 53-70-3  | Dibenz(a,h)anthracene  | 0.0151 | 11 to       | 0.0333 | 0.0151 |
| 91-20-3  | Naphthalene            | 0.0222 | U           | 0.0333 | 0.0222 |
| 206-44-0 | Fluoranthene           | 0.0624 |             | 0.0333 | 0.0141 |
| 90-12-0  | 1-Methylnaphthalene    | 0.0182 | U           | 0.0333 | 0.0182 |
| 56-55-3  | Benzo[a]anthracene     | 0.0570 |             | 0.0333 | 0.0121 |
| 193-39-5 | Indeno[1,2,3-cd]pyrene | 0.0954 | ~ JH        | 0.0333 | 0.0162 |
| 218-01-9 | Chrysene               | 0.195  | 717         | 0.0333 | 0.0121 |
| 83-32-9  | Acenaphthene           | 0.0222 | U           | 0.0333 | 0.0222 |
| 205-99-2 | Benzo[b]fluoranthene   | 0.139  | 1 JN        | 0.0333 | 0.0222 |

| CAS NO.   | SURROGATE               | %REC | Q | LIMITS   |
|-----------|-------------------------|------|---|----------|
| 321-60-8  | 2-Fluorobiphenyl (Surr) | 19   | X | 29-120   |
| 4165-60-0 | Nitrobenzene-d5         | 17   | X | 27-120   |
| 1718-51-0 | Terphenyl-d14           | 20   |   | . 13-120 |



Lab Name: TestAmerica Nashville Job No.: 490-137889-1 SDG No.: Client Sample ID: North Lab Sample ID: 490-137889-5 Matrix: Solid Lab File ID: 100317-029.D Analysis Method: 8270D SIM Date Collected: 10/02/2017 14:30 Extract. Method: 3550C Date Extracted: 10/03/2017 12:54 Sample wt/vol: 30.27(g) Date Analyzed: 10/03/2017 18:46 Con. Extract Vol.: 1.00(mL) Dilution Factor: 25 Injection Volume: 3(uL) Level: (low/med) Low % Moisture: 1.6 GPC Cleanup: (Y/N) N Analysis Batch No.: 464885 Units: mg/Kg

| CAS NO.  | COMPOUND NAME          | RESULT | Q     | RL     | MDL    |
|----------|------------------------|--------|-------|--------|--------|
| 50-32-8  | Benzo[a]pyrene         | 0.0363 | 3. QQ | 0.0831 | 0.0327 |
| 86-73-7  | Fluorene               | 0.0881 | U     | 0.126  | 0.0881 |
| 208-96-8 | Acenaphthylene         | 0.0453 | Ū     | 0.0831 | 0.0453 |
| 191-24-2 | Benzo[g,h,i]perylene   | 0.0613 | 250   | 0.0831 | 0.0352 |
| 85-01-8  | Phenanthrene           | 0.0428 | U     | 0.0831 | 0.0428 |
| 207-08-9 | Benzo[k]fluoranthene   | 0.0453 | U     | 0.0831 | 0.0453 |
| 120-12-7 | Anthracene             | 0.0327 | Ū     | 0.0831 | 0.0327 |
| 91-57-6  | 2-Methylnaphthalene    | 0.0529 | Ū     | 0.0831 | 0.0529 |
| 129-00-0 | Pyrene                 | 0.0474 | 15Q   | 0.0831 | 0.0378 |
| 53-70-3  | Dibenz(a,h)anthracene  | 0.0378 | U )   | 0.0831 | 0.0378 |
| 91-20-3  | Naphthalene            | 0.0554 | Ü     | 0.0831 | 0.0554 |
| 206-44-0 | Fluoranthene           | 0.0352 | U     | 0.0831 | 0.0352 |
| 90-12-0  | 1-Methylnaphthalene    | 0.0453 | U     | 0.0831 | 0.0453 |
| 56-55-3  | Benzo[a]anthracene     | 0.0302 | υ     | 0.0831 | 0.0302 |
| 193-39-5 | Indeno[1,2,3-cd]pyrene | 0.0458 | 8 dQ  | 0.0831 | 0.0403 |
| 218-01-9 | Chrysene               | 0.105  | 1     | 0.0831 | 0.0302 |
| 83-32-9  | Acenaphthene           | 0.0554 | Ü     | 0.0831 | 0.0554 |
| 205-99-2 | Benzo[b]fluoranthene   | 0.0739 | QL &  | 0.0831 | 0.0554 |

| CAS NO.   | SURROGATE               | %REC | Q | LIMITS |
|-----------|-------------------------|------|---|--------|
| 321-60-8  | 2-Fluorobiphenyl (Surr) | 6    | X | 29-120 |
| 4165-60-0 | Nitrobenzene-d5         | 5    | X | 27-120 |
| 1718-51-0 | Terphenyl-d14           | 8    | Х | 13-120 |

& rollala

Lab Name: TestAmerica Nashville Job No.: 490-137889-1

SDG No.:

Client Sample ID: South Lab Sample ID: 490-137889-6

Matrix: Solid Lab File ID: 100317-030.D

Analysis Method: 8270D SIM Date Collected: 10/02/2017 14:45

Extract. Method: 3550C Date Extracted: 10/03/2017 12:54

Sample wt/vol: 30.18(g) Date Analyzed: 10/03/2017 19:06

Con. Extract Vol.: 1.00(mL) Dilution Factor: 25

Injection Volume: 3(uL) Level: (low/med) Low

% Moisture: 2.2 GPC Cleanup:(Y/N) N

Analysis Batch.No.: 464885 Units: mg/Kg

| CAS NO.  | COMPOUND NAME          | RESULT | Q    | RL     | MDL    |
|----------|------------------------|--------|------|--------|--------|
| 50-32-8  | Benzo[a]pyrene         | 0.223  |      | 0.0838 | 0.0330 |
| 86-73-7  | Fluorene               | 0.0889 | U    | 0.127  | 0.0889 |
| 208-96-8 | Acenaphthylene         | 0.104  |      | 0.0838 | 0.0457 |
| 191-24-2 | Benzo[g,h,i]perylene   | 0.281  |      | 0.0838 | 0.0356 |
| 8-5-01-8 | Phenanthrene           | 0.0458 | x30  | 0.0838 | 0.0432 |
| 207-08-9 | Benzo[k]fluoranthene   | 0.131  |      | 0.0838 | 0.0457 |
| 120-12-7 | Anthracene             | 0.0613 | 7 JQ | 0.0838 | 0.0330 |
| 91-57-6  | 2-Methylnaphthalene    | 0.0533 | U    | 0.0838 | 0.0533 |
| 129-00-0 | Pyrene                 | 0.218  |      | 0.0838 | 0.0381 |
| 53-70-3  | Dibenz(a,h)anthracene  | 0.0620 | 110  | 0.0838 | 0.0381 |
| 91-20-3  | Naphthalene            | 0.0559 | U    | 0.0838 | 0.0559 |
| 206-44-0 | Fluoranthene           | 0.169  |      | 0.0838 | 0.0356 |
| 90-12-0  | 1-Methylnaphthalene    | 0.0457 | Ü    | 0.0838 | 0.0457 |
| 56-55-3  | Benzo[a]anthracene     | 0.0305 | U    | 0.0838 | 0.0305 |
| 193-39-5 | Indeno[1,2,3-cd]pyrene | 0.249  |      | 0.0838 | 0.0406 |
| 218-01-9 | Chrysene               | 0.0305 | U    | 0.0838 | 0.0305 |
| 83-32-9  | Acenaphthene           | 0.0559 | Ū    | 0.0838 | 0.0559 |
| 205-99-2 | Benzo[b]fluoranthene   | 0.389  |      | 0.0838 | 0.0559 |

| CAS NO.   | · SURROGATE             | %REC | Q | LIMITS |
|-----------|-------------------------|------|---|--------|
| 321-60-8  | 2-Fluorobiphenyl (Surr) | 14   | X | 29-120 |
| 4165-60-0 | Nitrobenzene-d5         | 13   | X | 27-120 |
| 1718-51-0 | Terphenyl-d14           | 17   |   | 13-120 |

of plans

Lab Name: TestAmerica Nashville Job No.: 490-137889-1 SDG No.: Client Sample ID: West-01 Lab Sample ID: 490-137889-3 Matrix: Solid Lab File ID: 100317-031.D Analysis Method: 8270D Date Collected: 10/02/2017 14:10 Extract. Method: 3550C Date Extracted: 10/03/2017 12:58 Date Analyzed: 10/03/2017 Sample wt/vol: 30.02(g)23:50 Con. Extract Vol.: 1.00(mL) Dilution Factor: 25 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: 1.5 GPC Cleanup: (Y/N) N

Units: mq/Kq

CAS NO. RESULT COMPOUND NAME Q RL MDL 95-94-3 4.29 U 8.45 4.29 1,2,4,5-Tetrachlorobenzene 8.45 4.59 58-90-2 2,3,4,6-Tetrachlorophenol 4.59 95-95-4 2,4,5-Trichlorophenol 5.53 U 8.45 5.53 88-06-2 2,4,6-Trichlorophenol 4.87 U 8.45 4.87 4.44 8.45 4.44 120-83-2 2,4-Dichlorophenol U 8.50 17.0 8.50 105-67-9 2,4-Dimethylphenol Ū 6.37 51-28-5 6.37 U 8.45 2,4-Dinitrophenol 121-14-2 5.28 8.45 5.28 2,4-Dinitrotoluene 606-20-2 5.66 U 8.45 5.66 2,6-Dinitrotoluene 91-58-7 5.30 U 8.45 5.30 2-Chloronaphthalene 95-57-8 8.45 4.85 2-Chlorophenol 4.85 1.70 0.660 91-57-6 2-Methylnaphthalene 0.660 U 5.25 88-74-4 2-Nitroaniline 5.25 U 8.45 95-48-7 2-Methylphenol 5.48 U 8.45 5.48 6.16 88-75-5 6.16 U 8.45 2-Nitrophenol 15831-10-4 3 & 4 Methylphenol 5.15 8.45 5.15 91-94-1 3,3'-Dichlorobenzidine 5.18 U 17.0 5.18 5.84 5.84 U 17.0 99-09-2 3-Nitroaniline 4,6-Dinitro-2-methylphenol 5.81 U 8.45 5.81 534-52-1 101-55-3 5.20 U 8.45 5.20 4-Bromophenyl phenyl ether 8.45 4.26 59-50-7 4-Chloro-3-methylphenol 4.26 U 106-47-8 4-Chloroaniline 5.76 8.45 5.76 7005-72-3 5.10 5.10 U 8.45 4-Chlorophenyl phenyl ether 100-01-6 4-Nitroaniline 6.04 IJ 17.0 6.04 100-02-7 4-Nitrophenol 9.69 U 17.0 9.69 1.70 0.812 83-32-9 Acenaphthene 0.812 U 208-96-8 0.736 1.70 0.736 Acenaphthylene 4.72 U 8.45 4.72 98-86-2 Acetophenone 0.736 0.736 1.70 120-12-7 Anthracene 1912-24-9 4.26 8.45 4.26 Atrazine 56-55-3 Benzo[a]anthracene 0.761 IJ 1.70 0.761 1.70 50-32-8 Benzo[a]pyrene 0.685 U 0.685 205-99-2 Benzo[b]fluoranthene 0.710 U 1.70 0.710 191-24-2 0.837 IJ 1.70 0.837 Benzo[g,h,i]perylene

FORM I 8270D

Analysis Batch No.: 465063

& phyra

Lab Name: TestAmerica Nashville Job No.: 490-137889-1 SDG No.: Client Sample ID: West-01 Lab Sample ID: 490-137889-3 Matrix: Solid Lab File ID: 100317-031.D Analysis Method: 8270D Date Collected: 10/02/2017 14:10 Extract. Method: 3550C Date Extracted: 10/03/2017 12:58 Sample wt/vol: 30.02(g) Date Analyzed: 10/03/2017 23:50 Con. Extract Vol.: 1.00(mL) Dilution Factor: 25 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: 1.5 GPC Cleanup: (Y/N) N

Units: mg/Kg

| CAS NO.  | COMPOUND NAME                            | RESULT | Q     | RL   | MDL   |
|----------|------------------------------------------|--------|-------|------|-------|
| 207-08-9 | Benzo[k]fluoranthene                     | 0.685  | U     | 1.70 | 0.685 |
| 100-52-7 | Benzaldehyde                             | 6.44   | # 15V | 17.0 | 6.44  |
| 111-91-1 | Bis(2-chloroethoxy)methane               | 5.07   | U     | 8.45 | 5.07  |
| 92-52-4  | Biphenyl                                 | 4.79   | U     | 8.45 | 4.79  |
| 111-44-4 | Bis(2-chloroethyl)ether                  | 5.40   | U     | 8.45 | 5.40  |
| 108-60-1 | bis (2-chloroisopropyl) ether            | 5.02   | U     | 8.45 | 5.02  |
| 85-68-7  | Butyl benzyl phthalate                   | 5.45   | Ū     | 8.45 | 5.45  |
| 117-81-7 | Bis(2-ethylhexyl) phthalate              | 5.25   | U.    | 8.45 | 5,25  |
| 86-74-8  | Carbazole                                | 5.25   | U     | 8.45 | 5.25  |
| 105-60-2 | Caprolactam                              | 3.93   | U     | 8.45 | 3.93  |
| 218-01-9 | Chrysene                                 | 0.939  | U     | 1.70 | 0.939 |
| 53-70-3  | Dibenz(a,h)anthracene                    | 0.812  | U     | 1.70 | 0.812 |
| 132-64-9 | Dibenzofuran                             | 5.33   | U     | 8.45 | 5.33  |
| 84-66-2  | Diethyl phthalate                        | 5.38   | U     | 8.45 | 5.38  |
| 131-11-3 | Dimethyl phthalate                       | 5.25   | U     | 8.45 | 5.25  |
| 84-74-2  | Di-n-butyl phthalate                     | 5.35   | U     | 8.45 | 5.35  |
| 86-73-7  | Fluorene                                 | 0.736  | U     | 1.70 | 0.736 |
| 117-84-0 | Di-n-octyl phthalate                     | 4.52   | U     | 8.45 | 4.52  |
| 118-74-1 | Hexachlorobenzene                        | 6.34   | U     | 8.45 | 6.34  |
| 87-68-3  | Hexachlorobutadiene                      | 4.24   | U     | 8.45 | 4.24  |
| 77-47-4  | Hexachlorocyclopentadiene                | 3.81   | 107V  | 8.45 | 3.81  |
| 67-72-1  | Hexachloroethane                         | 4.59   | U     | 8.45 | 4.59  |
| 193-39-5 | Indeno[1,2,3-cd]pyrene                   | 0.736  | Ū     | 1.70 | 0.736 |
| 78-59-1  | Isophorone                               | 4.77   | U     | 8.45 | 4.77  |
| 91-20-3  | Naphthalene                              | 0.736  | U     | 1.70 | 0.736 |
| 98-95-3  | Nitrobenzene                             | 5.10   | Ū     | 8.45 | 5.10  |
| 621-64-7 | N-Nitrosodi-n-propylamine                | 4.92   | Ū     | 8.45 | 4.92  |
| 86-30-6  | n-Nitrosodiphenylamine(as diphenylamine) | 1.34   | Ū     | 8.45 | 1.34  |
| 87-86-5  | Pentachlorophenol                        | 6.75   | Ū     | 17.0 | 6.75  |
| 85-01-8  | Phenanthrene                             | 0.863  | U     | 1.70 | 0.863 |
| 108-95-2 | Phenol                                   | 5.15   | U     | 8.45 | 5.15  |
| 129-00-0 | Pyrene                                   | 0.863  | Ū     | 1.70 | 0.863 |
| 206-44-0 | Fluoranthene                             | 0.863  | Ŭ     | 1.70 | 0.863 |
| 120-82-1 | 1,2,4-Trichlorobenzene                   | 4.59   | U     | 8.45 | 4.59  |

FORM I 8270D

Analysis Batch No.: 465063



Lab Name: TestAmerica Nashville Job No.: 490-137889-1

SDG No.:

Client Sample ID: West-01 Lab Sample ID: 490-137889-3

Matrix: Solid Lab File ID: 100317-031.D

Analysis Method: 8270D Date Collected: 10/02/2017 14:10

Extract. Method: 3550C Date Extracted: 10/03/2017 12:58

Sample wt/vol: 30.02(g) Date Analyzed: 10/03/2017 23:50

Con. Extract Vol.: 1.00(mL) Dilution Factor: 25

Injection Volume: 1(uL) Level: (low/med) Low

GPC Cleanup: (Y/N) N % Moisture: 1.5

Analysis Batch No.: 465063 Units: mg/Kg

| CAS NO.  | COMPOUND NAME          | RESULT | Q      | RL   | MDL   |
|----------|------------------------|--------|--------|------|-------|
| 95-50-1  | 1,2-Dichlorobenzene    | 4.82   | U      | 8.45 | 4.82  |
| 541-73-1 | 1,3-Dichlorobenzene    | 4.82   | Ū      | 8.45 | 4.82  |
| 106-46-7 | 1,4-Dichlorobenzene    | 4.97   | U      | 8.45 | 4.97  |
| 92-87-5  | Benzidine              | 5.18   | -# V3K | 8.45 | 5.18  |
| 100-51-6 | Benzyl alcohol         | 4.92   | U      | 8.45 | 4.92  |
| 62-75-9  | N-Nitrosodimethylamine | 0.507  | U      | 8.45 | 0.507 |

| CAS NO.   | SURROGATE                   | %REC | Q | LIMITS |
|-----------|-----------------------------|------|---|--------|
| 118-79-6  | 2,4,6-Tribromophenol (Surr) | 84   |   | 10-120 |
| 321-60-8  | 2-Fluorobiphenyl (Surr)     | 40   |   | 29-120 |
| 367-12-4  | 2-Fluorophenol (Surr)       | 45   |   | 10-120 |
| 4165-60-0 | Nitrobenzene-d5 (Surr)      | 41   |   | 27-120 |
| 4165-62-2 | Phenol-d5 (Surr)            | 33   |   | 10-120 |
| 1718-51-0 | Terphenyl-d14 (Surr)        | 43   |   | 13-120 |

FORM I 8270D & PHIA

Lab Name: TestAmerica Nashville Job No.: 490-137889-1 SDG No.: Client Sample ID: West-02 Lab Sample ID: 490-137889-4 Matrix: Solid Lab File ID: 100317-032.D Analysis Method: 8270D Date Collected: 10/02/2017 14:20 Extract. Method: 3550C Date Extracted: 10/03/2017 12:58 Sample wt/vol: 30.19(g) Date Analyzed: 10/04/2017 00:09 Con. Extract Vol.: 1.00(mL) Dilution Factor: 25 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: 1.4 GPC Cleanup:(Y/N) N Analysis Batch No.: 465063 Units: mg/Kg

| CAS NO.          | COMPOUND NAME               | RESULT | Q  | RL   | MDL   |
|------------------|-----------------------------|--------|----|------|-------|
| 95-94-3          | 1,2,4,5-Tetrachlorobenzene  | 4.26   | U  | 8.39 | 4.26  |
| 58-90-2          | 2,3,4,6-Tetrachlorophenol   | 4.56   | U  | 8.39 | 4.56  |
| 95-95 <b>-</b> 4 | 2,4,5-Trichlorophenol       | 5.49   | U  | 8.39 | 5.49  |
| 88-06-2          | 2,4,6-Trichlorophenol       | 4.84   | U  | 8.39 | 4.84  |
| 120-83-2         | 2,4-Dichlorophenol          | 4.41   | Ü, | 8.39 | 4.41  |
| 105-67-9         | 2,4-Dimethylphenol          | 8.44   | U  | 16.9 | 8.44  |
| 51-28-5          | 2,4-Dinitrophenol           | 6.33   | U  | 8.39 | 6.33  |
| 121-14-2         | 2,4-Dinitrotoluene          | 5.24   | U  | 8.39 | 5.24  |
| 606-20-2         | 2,6-Dinitrotoluene          | 5.62   | U  | 8.39 | 5.62  |
| 91-58-7          | 2-Chloronaphthalene         | 5.27   | Ü  | 8.39 | 5.27  |
| 95-57-8          | 2-Chlorophenol              | 4.81   | Ū  | 8.39 | 4.81  |
| 91-57-6          | 2-Methylnaphthalene         | 0.655  | U  | 1.69 | 0.655 |
| 88-74-4          | 2-Nitroaniline              | 5.22   | U  | 8.39 | 5.22  |
| 95-48-7          | 2-Methylphenol              | 5.44   | U  | 8.39 | 5.44  |
| 88-75-5          | 2-Nitrophenol               | 6.12   | U  | 8.39 | 6.12  |
| 15831-10-4       | 3 & 4 Methylphenol          | 5.12   | U  | 8.39 | 5.12  |
| 91-94-1          | 3,3'-Dichlorobenzidine      | 5.14   | U  | 16.9 | 5.14  |
| 99-09-2          | 3-Nitroaniline              | 5.80   | U  | 16.9 | 5.80  |
| 534-52-1         | 4,6-Dinitro-2-methylphenol  | 5.77   | Ū  | 8.39 | 5.77  |
| 101-55-3         | 4-Bromophenyl phenyl ether  | 5.17   | U  | 8.39 | 5.17  |
| 59-50-7          | 4-Chloro-3-methylphenol     | 4.23   | U  | 8.39 | 4.23  |
| 106-47-8         | 4-Chloroaniline             | 5.72   | U  | 8.39 | 5.72  |
| 7005-72-3        | 4-Chlorophenyl phenyl ether | 5.07   | U  | 8.39 | 5.07  |
| 100-01-6         | 4-Nitroaniline              | 6.00   | Ū  | 16.9 | 6.00  |
| 100-02-7         | 4-Nitrophenol               | 9.63   | Ū  | 16.9 | 9.63  |
| 83-32-9          | Acenaphthene                | 0.806  | Ū  | 1.69 | 0.806 |
| 208-96-8         | Acenaphthylene              | 0.731  | U  | 1.69 | 0.731 |
| 98-86-2          | Acetophenone                | 4.69   | Ü  | 8.39 | 4.69  |
| 120-12-7         | Anthracene                  | 0.731  | Ū  | 1.69 | 0.731 |
| 1912-24-9        | Atrazine                    | 4.23   | Ū  | 8.39 | 4.23  |
| 56-55-3          | Benzo[a]anthracene          | 0.756  | U  | 1.69 | 0.756 |
| 50-32-8          | Benzo[a]pyrene              | 0.680  | Ü  | 1.69 | 0.680 |
| 205-99-2         | Benzo[b]fluoranthene        | 0.706  | U  | 1.69 | 0.706 |
| 191-24-2         | Benzo[g,h,i]perylene        | 0.832  | U  | 1.69 | 0.832 |

& WAY

FORM I 8270D

Job No.: 490-137889-1

Units: mg/Kg

 SDG No.:

 Client Sample ID: West-02
 Lab Sample ID: 490-137889-4

 Matrix: Solid
 Lab File ID: 100317-032.D

 Analysis Method: 8270D
 Date Collected: 10/02/2017 14:20

Extract. Method: 3550C Date Extracted: 10/03/2017 12:58

Sample wt/vol: 30.19(g) Date Analyzed: 10/04/2017 00:09

Con. Extract Vol.: 1.00(mL) Dilution Factor: 25

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 1.4 GPC Cleanup: (Y/N) N

Lab Name: TestAmerica Nashville

Analysis Batch No.: 465063

CAS NO. COMPOUND NAME RESULT 0 RL MDL 207-08-9 Benzo[k]fluoranthene 0.680 Ü 1.69 0.680 100-52-7 Benzaldehvde 6.40 W UJK 16.9 6.40 111-91-1 Bis (2-chloroethoxy) methane 5.04 IJ 8.39 5.04 92-52-4 Biphenyl 4.76 U 8.39 4.76 111-44-4 Bis(2-chloroethyl)ether 5.37 U 8.39 5.37 108-60-1 bis (2-chloroisopropyl) ether 4.99 8.39 4.99 IJ 85-68-7 Butyl benzyl phthalate 5.42 Ū 8.39 5.42 Bis(2-ethylhexyl) phthalate 8.39 117-81-7 5.22 IJ 5.22 86-74-8 Carbazole 5.22 IJ 8.39 5.22 105-60-2 Caprolactam 3.91 8.39 3.91 218-01-9 τī 0.932 Chrysene 0.932 1.69 53-70-3 Dibenz(a,h)anthracene 0.806 Ū 1.69 0.806 132-64-9 Dibenzofuran 5.29 U 8.39 5.29 84-66-2 5.34 Diethyl phthalate 5.34 8.39 131-11-3 Dimethyl phthalate 5.22 8.39 5.22 84-74-2 Di-n-butyl phthalate 5.32 IJ 8.39 5.32 86-73-7 Fluorene 0.731 Ū 1.69 0.731 117-84-0 Di-n-octyl phthalate 4.49 8.39 4.49 IJ 118-74-1 Hexachlorobenzene 6.30 Ü 8.39 6.30 87-68-3 Hexachlorobutadiene 4.21 U 8.39 4.21 77-47-4 Hexachlorocyclopentadiene 3.78 3.78 8.39 # N2F 67-72-1 Hexachloroethane 4.56 U 8.39 4.56 193-39-5 Indeno[1,2,3-cd]pyrene 0.731 1.69 0.731 78-59-1 4.74 4.74 Isophorone ŢΤ 8.39 91-20-3 Naphthalene 0.731 U 0.731 1.69 98-95-3 Nitrobenzene 5.07 U 8.39 5.07 621-64-7 N-Nitrosodi-n-propylamine 4.89 4.89 Ū 8.39 86-30-6 n-Nitrosodiphenylamine (as 1.34 U 8.39 1.34 diphenylamine) 87-86-5 Pentachlorophenol 6.70 6.70 IJ 16.9 85-01-8 Phenanthrene 0.857 U 1.69 0.857 108-95-2 Phenol 8.39 5.12 U 5.12

FORM I 8270D WA

Pyrene

Fluoranthene

1,2,4-Trichlorobenzene

129-00-0

206-44-0

120-82-1

Page 237 of 1022

0.857

0.857

4.56

Ū

IJ

U

1.69

1.69

8.39

0.857

0.857

4.56

Lab Name: TestAmerica Nashville Job No.: 490-137889-1

SDG No.:

Client Sample ID: West-02 Lab Sample ID: 490-137889-4

Matrix: Solid Lab File ID: 100317-032.D

Analysis Method: 8270D Date Collected: 10/02/2017 14:20

Extract. Method: 3550C Date Extracted: 10/03/2017 12:58

Sample wt/vol: 30.19(g) Date Analyzed: 10/04/2017 00:09

Con. Extract Vol.: 1.00 (mL) Dilution Factor: 25

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 1.4 GPC Cleanup:(Y/N) N

Analysis Batch No.: 465063 Units: mg/Kg

| CAS NO.  | . COMPOUND NAME        | RESULT | Q     | RL   | MDL   |
|----------|------------------------|--------|-------|------|-------|
| 95-50-1  | 1,2-Dichlorobenzene    | 4.79   | U     | 8.39 | 4.79  |
| 541-73-1 | 1,3-Dichlorobenzene    | 4.79   | U     | 8.39 | 4.79  |
| 106-46-7 | 1,4-Dichlorobenzene    | 4.94   | Ū     | 8.39 | 4.94  |
| 92-87-5  | Benzidine              | 5.14   | #VTV. | 8.39 | 5.14  |
| 100-51-6 | Benzyl alcohol         | 4.89   | U     | 8.39 | 4.89  |
| 62-75-9  | N-Nitrosodimethylamine | 0.504  | Ū     | 8.39 | 0.504 |

| CAS NO.   | SURROGATE                   | %REC | Q      | LIMITS |
|-----------|-----------------------------|------|--------|--------|
| 118-79-6  | 2,4,6-Tribromophenol (Surr) | 67   |        | 10-120 |
| 321-60-8  | 2-Fluorobiphenyl (Surr)     | 10   | X      | 29-120 |
| 367-12-4  | 2-Fluorophenol (Surr)       | 16   | ****** | 10-120 |
| 4165-60-0 | Nitrobenzene-d5 (Surr)      | 12   | X      | 27-120 |
| 4165-62-2 | Phenol-d5 (Surr)            | 9    | X      | 10-120 |
| 1718-51-0 | Terphenyl-d14 (Surr)        | 13   |        | 13-120 |

& lollollo

Lab Name: TestAmerica Nashville Job No.: 490-137889-1

SDG No.:

Client Sample ID: North Lab Sample ID: 490-137889-5

Matrix: Solid Lab File ID: 100317-033.D

Analysis Method: 8270D Date Collected: 10/02/2017 14:30

Extract. Method: 3550C Date Extracted: 10/03/2017 12:58

Sample wt/vol: 30.14(g) Date Analyzed: 10/04/2017 00:29

Con. Extract Vol.: 1.00(mL) Dilution Factor: 25

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 1.6 GPC Cleanup: (Y/N) N

Analysis Batch No.: 465063 Units: mg/Kg

| CAS NO.    | COMPOUND NAME               | RESULT | Q  | RL   | MDL   |
|------------|-----------------------------|--------|----|------|-------|
| 95-94-3    | 1,2,4,5-Tetrachlorobenzene  | 4.27   | Ū  | 8.42 | 4.27  |
| 58-90-2    | 2,3,4,6-Tetrachlorophenol   | 4.58   | Ü  | 8.42 | 4.58  |
| 95-95-4    | 2,4,5-Trichlorophenol       | 5.51   | U  | 8.42 | 5.51  |
| 88-06-2    | 2,4,6-Trichlorophenol       | 4.85   | U  | 8.42 | 4.85  |
| 120-83-2   | 2,4-Dichlorophenol          | 4.42   | U  | 8.42 | 4.42  |
| 105-67-9   | 2,4-Dimethylphenol          | 8.47   | U  | 16.9 | 8.47  |
| 51-28-5    | 2,4-Dinitrophenol           | 6.34   | U  | 8.42 | 6.34  |
| 121-14-2   | 2,4-Dinitrotoluene          | 5.26   | Ū  | 8.42 | 5.26  |
| 606-20-2   | 2,6-Dinitrotoluene          | 5.64   | Ū  | 8.42 | 5.64  |
| 91-58-7    | 2-Chloronaphthalene         | 5.28   | U  | 8.42 | 5.28  |
| 95-57-8    | 2-Chlorophenol              | 4.83   | U  | 8.42 | 4.83  |
| 91-57-6    | 2-Methylnaphthalene         | 0.657  | U  | 1.69 | 0.657 |
| 88-74-4    | 2-Nitroaniline              | 5.23   | U  | 8.42 | 5.23  |
| 95-48-7    | 2-Methylphenol              | 5.46   | U- | 8.42 | 5.46  |
| 88-75-5    | 2-Nitrophenol               | 6.14   | U  | 8.42 | 6.14  |
| 15831-10-4 | 3 & 4 Methylphenol          | 5.13   | U  | 8.42 | 5.13  |
| 91-94-1    | 3,3'-Dichlorobenzidine      | 5.16   | U  | 16.9 | 5.16  |
| 99-09-2    | 3-Nitroaniline              | 5.81   | Ū  | 16.9 | 5.81  |
| 534-52-1   | 4,6-Dinitro-2-methylphenol  | 5.79   | Ū  | 8.42 | 5.79  |
| 101-55-3   | 4-Bromophenyl phenyl ether  | 5.18   | U  | 8.42 | 5.18  |
| 59-50-7    | 4-Chloro-3-methylphenol     | 4.25   | U  | 8.42 | 4.25  |
| 106-47-8   | 4-Chloroaniline             | 5.74   | U  | 8.42 | 5.74  |
| 7005-72-3  | 4-Chlorophenyl phenyl ether | 5.08   | Ū  | 8.42 | 5.08  |
| 100-01-6   | 4-Nitroaniline              | 6.02   | U  | 16.9 | 6.02  |
| 100-02-7   | 4-Nitrophenol               | 9.66   | Ü  | 16.9 | 9.66  |
| 83-32-9    | Acenaphthene                | 0.809  | U  | 1.69 | 0.809 |
| 208-96-8   | Acenaphthylene              | 0.733  | U  | 1.69 | 0.733 |
| 98-86-2    | Acetophenone                | 4.70   | Ü  | 8.42 | 4.70  |
| 120-12-7   | Anthracene                  | 0.733  | U  | 1.69 | 0.733 |
| 1912-24-9  | Atrazine                    | 4.25   | Ü  | 8.42 | 4.25  |
| 56-55-3    | Benzo[a]anthracene          | 0.758  | U  | 1.69 | 0.758 |
| 50-32-8    | Benzo[a]pyrene              | 0.683  | U  | 1.69 | 0.683 |
| 205-99-2   | Benzo[b]fluoranthene        | 0.708  | U  | 1.69 | 0.708 |
| 191-24-2   | Benzo[g,h,i]perylene        | 0.834  | U  | 1.69 | 0.834 |

FORM I 8270D

of loluly

Lab Name: TestAmerica Nashville Job No.: 490-137889-1

SDG No.:

Client Sample ID: North Lab Sample ID: 490-137889-5

Matrix: Solid Lab File ID: 100317-033.D

Analysis Method: 8270D Date Collected: 10/02/2017 14:30

Extract. Method: 3550C Date Extracted: 10/03/2017 12:58

Sample wt/vol: 30.14(g) Date Analyzed: 10/04/2017 00:29

Con. Extract Vol.: 1.00(mL) Dilution Factor: 25

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 1.6 GPC Cleanup: (Y/N) N

Analysis Batch No.: 465063 Units: mg/Kg

| CAS NO.  | COMPOUND NAME                            | RESULT | Q     | RL   | MDL   |
|----------|------------------------------------------|--------|-------|------|-------|
| 207-08-9 | Benzo[k]fluoranthene                     | 0.683  | U     | 1.69 | 0.683 |
| 100-52-7 | Benzaldehyde                             | 6.42   | -0 WW | 16.9 | 6.42  |
| 111-91-1 | Bis(2-chloroethoxy)methane               | 5.06   | U     | 8.42 | 5.06  |
| 92-52-4  | Biphenyl                                 | 4.78   | U     | 8.42 | 4.78  |
| 111-44-4 | Bis(2-chloroethyl)ether                  | 5.38   | U     | 8.42 | 5.38  |
| 108-60-1 | bis (2-chloroisopropyl) ether            | 5.01   | U     | 8.42 | 5.01  |
| 85-68-7  | Butyl benzyl phthalate                   | 5.43   | U     | 8.42 | 5.43  |
| 117-81-7 | Bis(2-ethylhexyl) phthalate              | 5.23   | U     | 8.42 | 5.23  |
| 86-74-8  | Carbazole                                | 5.23   | Ü     | 8.42 | 5.23  |
| 105-60-2 | Caprolactam                              | 3.92   | U     | 8.42 | 3.92  |
| 218-01-9 | Chrysene                                 | 0.935  | U     | 1.69 | 0.935 |
| 53-70-3  | Dibenz(a,h)anthracene                    | 0.809  | U     | 1.69 | 0.809 |
| 132-64-9 | Dibenzofuran                             | 5.31   | U     | 8.42 | 5.31  |
| 84-66-2  | Diethyl phthalate                        | 5.36   | U     | 8.42 | 5.36  |
| 131-11-3 | Dimethyl phthalate                       | 5.23   | U     | 8.42 | 5.23  |
| 84-74-2  | Di-n-butyl phthalate                     | 5.33   | U     | 8.42 | 5.33  |
| 86-73-7  | Fluorene                                 | 0.733  | Ü     | 1.69 | 0.733 |
| 117-84-0 | Di-n-octyl phthalate                     | 4.50   | U     | 8.42 | 4.50  |
| 118-74-1 | Hexachlorobenzene                        | 6.32   | U     | 8.42 | 6.32  |
| 87-68-3  | Hexachlorobutadiene                      | 4.22   | U     | 8.42 | 4.22  |
| 77-47-4  | Hexachlorocyclopentadiene                | 3.79   | 4,02x | 8.42 | 3.79  |
| 67-72-1  | Hexachloroethane                         | 4.58   | U     | 8.42 | 4.58  |
| 193-39-5 | Indeno[1,2,3-cd]pyrene                   | 0.733  | U     | 1.69 | 0.733 |
| 78-59-1  | Isophorone                               | 4.75   | U     | 8.42 | 4.75  |
| 91-20-3  | Naphthalene                              | 0.733  | U     | 1.69 | 0.733 |
| 98-95-3  | Nitrobenzene                             | 5.08   | U     | 8.42 | 5.08  |
| 621-64-7 | N-Nitrosodi-n-propylamine                | 4.90   | U     | 8.42 | 4.90  |
| 86-30-6  | n-Nitrosodiphenylamine(as diphenylamine) | 1.34   | U     | 8.42 | 1.34  |
| 87-86-5  | Pentachlorophenol                        | 6.72   | U     | 16.9 | 6.72  |
| 85-01-8  | Phenanthrene                             | 0.859  | U     | 1.69 | 0.859 |
| 108-95-2 | Phenol                                   | 5.13   | U     | 8.42 | 5.13  |
| 129-00-0 | Pyrene                                   | 0.859  | U     | 1.69 | 0.859 |
| 206-44-0 | Fluoranthene                             | 0.859  | Ü     | 1.69 | 0.859 |
| 120-82-1 | 1,2,4-Trichlorobenzene                   | 4.58   | U     | 8.42 | 4.58  |

FORM I 8270D

& plana

Page 245 of 1022

Lab Name: TestAmerica Nashville Job No.: 490-137889-1

SDG No.:

Client Sample ID: North Lab Sample ID: 490-137889-5

Matrix: Solid Lab File ID: 100317-033.D

Analysis Method: 8270D Date Collected: 10/02/2017 14:30

Extract. Method: 3550C Date Extracted: 10/03/2017 12:58

Sample wt/vol: 30.14(g) Date Analyzed: 10/04/2017 00:29

Con. Extract Vol.: 1.00(mL) Dilution Factor: 25

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 1.6 GPC Cleanup:(Y/N) N

Analysis Batch No.: 465063 Units: mg/Kg

| CAS NO.  | . COMPOUND NAME        | RESULT | Q   | RL   | MDL   |
|----------|------------------------|--------|-----|------|-------|
| 95-50-1  | 1,2-Dichlorobenzene    | 4.80   | Ū   | 8.42 | 4.80  |
| 541-73-1 | 1,3-Dichlorobenzene    | 4.80   | U   | 8.42 | 4.80  |
| 106-46-7 | 1,4-Dichlorobenzene    | 4.95   | Ū   | 8.42 | 4.95  |
| 92-87-5  | Benzidine              | 5.16   | ナザイ | 8.42 | 5.16  |
| 100-51-6 | Benzyl alcohol         | 4.90   | U   | 8.42 | 4.90  |
| 62-75-9  | N-Nitrosodimethylamine | 0.506  | U   | 8.42 | 0.506 |

| CAS NO.            | SURROGATE                   | %REC | Q | LIMITS |
|--------------------|-----------------------------|------|---|--------|
| 118-79-6           | 2,4,6-Tribromophenol (Surr) | 58   |   | 10-120 |
| 321-60-8           | 2-Fluorobiphenyl (Surr)     | 3    | Х | 29-120 |
| 367-12-4           | 2-Fluorophenol (Surr)       | 9    | X | 10-120 |
| 4165-60-0          | Nitrobenzene-d5 (Surr)      | 3    | X | 27-120 |
| 4165-62-2          | Phenol-d5 (Surr)            | 4    | X | 10-120 |
| 1718-51 <b>-</b> 0 | Terphenyl-dl4 (Surr)        | 5    | X | 13-120 |

& lower

FORM I 8270D

Lab Name: TestAmerica Nashville Job No.: 490-137889-1

SDG No.:

Client Sample ID: South Lab Sample ID: 490-137889-6

Matrix: Solid Lab File ID: 100317-034.D

Analysis Method: 8270D Date Collected: 10/02/2017 14:45

Extract. Method: 3550C Date Extracted: 10/03/2017 12:58

Sample wt/vol: 30.42(g) Date Analyzed: 10/04/2017 00:48

Con. Extract Vol.: 1.00(mL) Dilution Factor: 200

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 2.2 GPC Cleanup: (Y/N) N

Analysis Batch No.: 465063 Units: mg/Kg

| CAS NO.    | COMPOUND NAME               | RESULT | Q | RL   | MDL  |
|------------|-----------------------------|--------|---|------|------|
| 95-94-3    | 1,2,4,5-Tetrachlorobenzene  | 34.1   | U | 67.1 | 34.1 |
| 58-90-2    | 2,3,4,6-Tetrachlorophenol   | 36.5   | Ū | 67.1 | 36.5 |
| 95-95-4    | 2,4,5-Trichlorophenol       | 43.9   | Ū | 67.1 | 43.9 |
| 88-06-2    | 2,4,6-Trichlorophenol       | 38.7   | Ü | 67.1 | 38.7 |
| 120-83-2   | 2,4-Dichlorophenol          | 35.3   | Ū | 67.1 | 35.3 |
| 105-67-9   | 2,4-Dimethylphenol          | 67.5   | Ū | 135  | 67.5 |
| 51-28-5    | 2,4-Dinitrophenol           | 50.6   | U | 67.1 | 50.6 |
| 121-14-2   | 2,4-Dinitrotoluene          | 41.9   | Ū | 67.1 | 41.9 |
| 606-20-2   | 2,6-Dinitrotoluene          | 45.0   | Ū | 67.1 | 45.0 |
| 91-58-7    | 2-Chloronaphthalene         | 42.1   | U | 67.1 | 42.1 |
| 95-57-8    | 2-Chlorophenol              | 38.5   | U | 67.1 | 38.5 |
| 91-57-6    | 2-Methylnaphthalene         | 5.24   | U | 13.5 | 5.24 |
| 88-74-4    | 2-Nitroaniline              | 41.7   | U | 67.1 | 41.7 |
| 95-48-7    | 2-Methylphenol              | 43.5   | Ū | 67.1 | 43.5 |
| 88-75-5    | 2-Nitrophenol               | 49.0   | U | 67.1 | 49.0 |
| 15831-10-4 | 3 & 4 Methylphenol          | 40.9   | Ū | 67.1 | 40.9 |
| 91-94-1    | 3,3'-Dichlorobenzidine      | 41.1   | U | 135  | 41.1 |
| 99-09-2    | 3-Nitroaniline              | 46.4   | U | 135  | 46.4 |
| 534-52-1   | 4,6-Dinitro-2-methylphenol  | 46.2   | U | 67.1 | 46.2 |
| 101-55-3   | 4-Bromophenyl phenyl ether  | 41.3   | U | 67.1 | 41.3 |
| 59-50-7    | 4-Chloro-3-methylphenol     | 33.9   | Ū | 67.1 | 33.9 |
| 106-47-8   | 4-Chloroaniline             | 45.8   | Ū | 67.1 | 45.8 |
| 7005-72-3  | 4-Chlorophenyl phenyl ether | 40.5   | U | 67.1 | 40.5 |
| 100-01-6   | 4-Nitroaniline              | 48.0   | Ū | 135  | 48.0 |
| 100-02-7   | 4-Nitrophenol               | 77.0   | Ū | 135  | 77.0 |
| 83-32-9    | Acenaphthene                | 6.45   | U | 13.5 | 6.45 |
| 208-96-8   | Acenaphthylene              | 5.85   | U | 13.5 | 5.85 |
| 98-86-2    | Acetophenone                | 37.5   | Ü | 67.1 | 37.5 |
| 120-12-7   | Anthracene                  | 5.85   | Ū | 13.5 | 5.85 |
| 1912-24-9  | Atrazine                    | 33.9   | U | 67.1 | 33.9 |
| 56-55-3    | Benzo[a]anthracene          | 6.05   | U | 13.5 | 6.05 |
| 50-32-8    | Benzo[a]pyrene              | 5.44   | U | 13.5 | 5.44 |
| 205-99-2   | Benzo[b]fluoranthene        | 5.64   | U | 13.5 | 5.64 |
| 191-24-2   | Benzo[g,h,i]perylene        | 6.65   | U | 13.5 | 6.65 |

FORM I 8270D

& 10/MA

Page 256 of 1022

Lab Name: TestAmerica Nashville Job No.: 490-137889-1

SDG No.:

Client Sample ID: South Lab Sample ID: 490-137889-6

Matrix: Solid Lab File ID: 100317-034.D

Analysis Method: 8270D Date Collected: 10/02/2017 14:45

Extract. Method: 3550C Date Extracted: 10/03/2017 12:58

Sample wt/vol: 30.42(g) Date Analyzed: 10/04/2017 00:48

Con. Extract Vol.: 1.00(mL) Dilution Factor: 200

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 2.2 GPC Cleanup:(Y/N) N

Analysis Batch No.: 465063 Units: mg/Kg

| CAS NO.  | COMPOUND NAME                            | RESULT | Q    | RL   | MDL  |
|----------|------------------------------------------|--------|------|------|------|
| 207-08-9 | Benzo[k]fluoranthene                     | 5.44   | U    | 13.5 | 5.44 |
| 100-52-7 | Benzaldehyde                             | 51.2   | せいし  | 135  | 51.2 |
| 111-91-1 | Bis(2-chloroethoxy)methane               | 40.3   | Ü    | 67.1 | 40.3 |
| 92-52-4  | Biphenyl                                 | 38.1   | U    | 67.1 | 38.1 |
| 111-44-4 | Bis(2-chloroethyl)ether                  | 42.9   | Ū    | 67.1 | 42.9 |
| 108-60-1 | bis (2-chloroisopropyl) ether            | 39.9   | Ū    | 67.1 | 39.9 |
| 85-68-7  | Butyl benzyl phthalate                   | 43.3   | U    | 67.1 | 43.3 |
| 117-81-7 | Bis(2-ethylhexyl) phthalate              | 41.7   | U    | 67.1 | 41.7 |
| 86-74-8  | Carbazole                                | 41.7   | Ü    | 67.1 | 41.7 |
| 105-60-2 | Caprolactam                              | 31.2   | U    | 67.1 | 31.2 |
| 218-01-9 | Chrysene                                 | 7.46   | U    | 13.5 | 7.46 |
| 53-70-3  | Dibenz(a,h)anthracene                    | 6.45   | U    | 13.5 | 6.45 |
| 132-64-9 | Dibenzofuran                             | 42.3   | U    | 67.1 | 42.3 |
| 84-66-2  | Diethyl phthalate                        | 42.7   | ט    | 67.1 | 42.7 |
| 131-11-3 | Dimethyl phthalate                       | 41.7   | U    | 67.1 | 41.7 |
| 84-74-2  | Di-n-butyl phthalate                     | 42.5   | U    | 67.1 | 42.5 |
| 86-73-7  | Fluorene                                 | 5.85   | U    | 13.5 | 5.85 |
| 117-84-0 | Di-n-octyl phthalate                     | 35.9   | U    | 67.1 | 35.9 |
| 118-74-1 | Hexachlorobenzene                        | 50.4   | U    | 67.1 | 50.4 |
| 87-68-3  | Hexachlorobutadiene                      | 33.7   | U    | 67.1 | 33.7 |
| 77-47-4  | Hexachlorocyclopentadiene                | 30.2   | # WY | 67.1 | 30.2 |
| 67-72-1  | Hexachloroethane                         | 36.5   | U    | 67.1 | 36.5 |
| 193-39-5 | Indeno[1,2,3-cd]pyrene                   | 5.85   | U    | 13.5 | 5.85 |
| 78-59-1  | Isophorone                               | 37.9   | U    | 67.1 | 37.9 |
| 91-20-3  | Naphthalene                              | 5.85   | U    | 13.5 | 5.85 |
| 98-95-3  | Nitrobenzene                             | 40.5   | U    | 67.1 | 40.5 |
| 621-64-7 | N-Nitrosodi-n-propylamine                | 39.1   | U    | 67.1 | 39.1 |
| 86-30-6  | n-Nitrosodiphenylamine(as diphenylamine) | 10.7   | U    | 67.1 | 10.7 |
| 87-86-5  | Pentachlorophenol                        | 53.6   | Ü    | 135  | 53.6 |
| 85-01-8  | Phenanthrene                             | 6.85   | Ŭ    | 13.5 | 6.85 |
| 108-95-2 | Phenol                                   | 40.9   | Ŭ    | 67.1 | 40.9 |
| 129-00-0 | Pyrene                                   | 6.85   | U    | 13.5 | 6.85 |
| 206-44-0 | Fluoranthene                             | 6.85   | U    | 13.5 | 6.85 |
| 120-82-1 | 1,2,4-Trichlorobenzene                   | 36.5   | U    | 67.1 | 36.5 |

FORM I 8270D

des popula

Lab Name: TestAmerica Nashville Job No.: 490-137889-1

SDG No.:

Client Sample ID: South Lab Sample ID: 490-137889-6

Matrix: Solid Lab File ID: 100317-034.D

Analysis Method: 8270D Date Collected: 10/02/2017 14:45

Extract. Method: 3550C Date Extracted: 10/03/2017 12:58

Sample wt/vol: 30.42(g) Date Analyzed: 10/04/2017 00:48

Con. Extract Vol.: 1.00(mL) Dilution Factor: 200

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 2.2 GPC Cleanup: (Y/N) N

Analysis Batch, No.: 465063 Units: mg/Kg

| CAS NO.  | COMPOUND NAME          | RESULT | Q   | RL   | MDL  |
|----------|------------------------|--------|-----|------|------|
| 95-50-1  | 1,2-Dichlorobenzene    | 38.3   | U   | 67.1 | 38.3 |
| 541-73-1 | 1,3-Dichlorobenzene    | 38.3   | Ū   | 67.1 | 38.3 |
| 106-46-7 | 1,4-Dichlorobenzene    | 39.5   | U   | 67.1 | 39.5 |
| 92-87-5  | Benzidine              | 41.1   | かけど | 67.1 | 41.1 |
| 100-51-6 | Benzyl alcohol         | 39.1   | Ü   | 67.1 | 39.1 |
| 62-75-9  | N-Nitrosodimethylamine | 4.03   | Ü   | 67.1 | 4.03 |

| CAS NO.   | SURROGATE                   | %REC | Q | LIMITS |
|-----------|-----------------------------|------|---|--------|
| 118-79-6  | 2,4,6-Tribromophenol (Surr) | 478  | X | 10-120 |
| 321-60-8  | 2-Fluorobiphenyl (Surr)     | . 49 |   | 29-120 |
| 367-12-4  | 2-Fluorophenol (Surr)       | 106  |   | 10-120 |
| 4165-60-0 | Nitrobenzene-d5 (Surr)      | 65   |   | 27-120 |
| 4165-62-2 | Phenol-d5 (Surr)            | 42   |   | 10-120 |
| 1718-51-0 | Terphenyl-d14 (Surr)        | 71   |   | 13-120 |

FORM I 8270D

& tolunts

Page 258 of 1022

#### DATA QUALITY ASSURANCE REVIEW

| SITE NAME                                                                                                                                      | Wilcox Oil                                                                               |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------------|
| WORK ORDER                                                                                                                                     | R NUMBER                                                                                 | 20406                                                  | .012.001.1065.01                                                                                 | TDD NUMBER         0001/17-065           SDG NUMBER         490-137586-1 |                                                    |                                      |                                           |                                          |                                                 |
| PROJECT NUM                                                                                                                                    | MBER                                                                                     | _                                                      |                                                                                                  |                                                                          |                                                    | 490-137586-1                         |                                           |                                          | 1                                               |
| Weston Solutions,<br>20406.012.001.1065<br>List (TAL) Metals a                                                                                 | 5.01; SDG No.                                                                            | 490-137                                                | 7586-1; Wilcox O                                                                                 | il. Two saı                                                              | mples we                                           | re ana                               | alyzed fo                                 | or Targe                                 |                                                 |
|                                                                                                                                                |                                                                                          |                                                        | SAMPLE NUM                                                                                       | BERS                                                                     |                                                    |                                      |                                           |                                          |                                                 |
| Top Soil                                                                                                                                       |                                                                                          | _ <u>I</u>                                             | Backfill                                                                                         |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
|                                                                                                                                                |                                                                                          |                                                        |                                                                                                  |                                                                          |                                                    |                                      |                                           |                                          |                                                 |
| This data package v<br>USEPA National Functional<br>Laboratory Program<br>(April, 2016), Qual<br>the Regional Proto<br>qualifications are list | inctional Guide<br>al Guidelines f<br>m National Fu<br>ity Assurance/Ç<br>col for Holdin | elines fo<br>for Inor<br>nctional<br>Quality<br>g Time | r Organic Superfu<br>ganic Superfund<br>Guidelines for H<br>Control Guidance<br>s, Blanks, and V | nd Method<br>Data Revi<br>Iigh Resol<br>for Remo                         | ds Data R<br>iew (Janu<br>lution Sup<br>val Activi | leview<br>uary,<br>perfur<br>ities ( | , (Januar<br>2017),<br>ad Meth<br>Septemb | ry, 2017<br>USEPA<br>ods Dat<br>per, 201 | ), USEPA<br>Contracta<br>Ta Review<br>1), and/o |
| REVIEWER                                                                                                                                       | Gloria J. Swi                                                                            | talski                                                 |                                                                                                  |                                                                          | DATE                                               | _(                                   | October                                   | 6, 2017                                  |                                                 |

#### **Data Qualifiers**

Data Qualifier Definitions were supplied by the Office of Solid Waste and Emergency Response (September 1989) and are included in the Functional Guidelines. Data qualifiers may be combined (UJ, QJ) with the corresponding combination of meanings. Additional qualifiers may be added to provide additional, more specific information (JL, UB, QJK), modifying the meaning of the primary qualifier. Addition qualifiers utilized by WESTON are H, L, K, B, and Q.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation or detection limit, which has been adjusted for sample weight/sample volume, extraction volume, percent solids, sample dilution or other analysis specific parameters.

An additional qualifier, "B", may be appended to indicate that while the analyte was detected in the sample, the presence of the analyte may be attributable to blank contamination and the analyte is therefore considered undetected with the sample detection or quantitation limit for the analyte being elevated.

J - The analyte was analyzed for, but the associated numerical value may not be consistent with the amount actually present in the environmental sample or may not be consistent with the sample detection or quantitation limit. The value is an estimated quantity. The data should be seriously considered for decision-making and are usable for many purposes.

An additional qualifier will be appended to the "J" qualifier that indicates the bias in the reported results:

- L Low bias
- H High bias
- K Unknown bias
- Q The reported concentration is less than the sample quantitation limit for the specific analyte in the sample.

The L and H qualifier will only be employed when a single qualification is required. When more than one quality control parameter affects the analytical result and a conflict results in assigning a bias, the result will be flagged JK.

- R Quality Control indicates that data are unusable for all purposes. The analyte was analyzed for, but the presence or absence of the analyte has not been verified. Resampling and reanalysis are necessary for verification to confirm or deny the presence of an analyte.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

#### METALS DATA EVALUATION

#### 1. Analytical Method:

Samples were prepared and analyzed for ICP metals using the procedures specified in SW-846 Method 6020A. Samples were prepared and analyzed for mercury using the procedures specified in SW-846 Methods 7471B.

#### 2. Holding Times:

The samples were received above the recommended  $\leq$ 6°C NFG limit. Professional judgment was used to not qualify the sample results. All samples met established holding time criteria of 180 days for ICP metals and 28 days for mercury. No qualifications are placed on the data.

#### 3. Initial Calibration:

ICP initial calibration included a blank and three standards and initial calibration verification results fell within the control limits of 90% to 110% of the true values and mercury initial calibration included a blank and six standards and initial calibration verification results fell within the control limits of 85% to 115% values. No qualifications are placed on the data.

#### 4. Continuing Calibration:

All ICP results fell within the control limits of 90% to 110% of the true values and all mercury results fell within the control limits of 85% to 115% of the true values. No qualifications are placed on the data.

#### 5. CRDL Standard:

All results for the CRDL standard were within the control limits of 70% to 130% of the true values or the sample results were greater than the CRDL action level. No qualifications are placed on the data.

#### 6. Blanks:

#### A. Laboratory Blanks:

A method blank was prepared at the required frequency of every time samples were prepared/digested for each matrix or every 20 samples whichever is greater. A target analyte was detected in the method blank. Details are noted below:

| INSTRUMENT ID<br>DATE/TIME | ANALYTE/BLANK ID           | CONCENTRATION | AFFECTED SAMPLES                       |
|----------------------------|----------------------------|---------------|----------------------------------------|
| ICPMS3 9/29/17 @16:41      | Aluminum/MB 490-463964/1-A | 7.286 mg/kg   | All Solids, remove laboratory "B" flag |

MB=Method Blank

#### B. Field Blanks:

No field or rinsate blank samples were submitted with this analytical package. No qualifications are placed on the data.

#### 7. ICP Interference Check:

All results for the interference check sample were within the control limits of 80% to 120% of the true values. No qualifications are placed on the data.

#### 8. Laboratory Control Sample (LCS):

The recoveries for the LCS were within the control limits provided. No qualifications are placed on the data.

#### 9. Duplicate Sample Analysis:

#### A. Laboratory Duplicate Analysis:

No sample from this analytical package underwent matrix spike/matrix spike duplicate (MS/MSD) analysis. No qualifications are placed on the data.

#### B. Field Duplicate Analysis:

No field duplicate samples were submitted with this analytical package. No qualifications are placed on the data.

#### 10. Spiked Sample Analysis:

No sample from this analytical package underwent MS/MSD analysis. No qualifications are placed on the data.

#### 11. ICP Serial Dilution:

No sample from this analytical package underwent serial dilution. No qualifications are placed on the data.

#### 12. Sample Quantitation and Reporting Limits:

Concentrations of all reported analytes were correctly calculated.

Reported concentrations less than the reporting limit (RL) qualified "J" by the laboratory are qualified "JQ" to indicate that the result is less than the RL but greater than the method detection limit (MDL).

#### 13. Laboratory Contact

No laboratory contact was required.

#### 14. Overall Assessment:

Reported concentrations less than the RL qualified "J" by the laboratory are qualified "JQ" to indicate that the result is less than the RL but greater than the MDL.

The analytical data is acceptable for use with the qualifications listed above.

| SITE NAME                                                                                     | Wilcox Oil                                                                               |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WORK ORDE                                                                                     | R NUMBER                                                                                 | 20406.012.001.1065.01                                                                                                                    | TDD NUMBER                                                                        | 0001/17-065                                                                                                                                                                                       |
| PROJECT NUM                                                                                   | MBER                                                                                     |                                                                                                                                          | SDG NUMBER                                                                        | 490-137586-1                                                                                                                                                                                      |
| 20406.012.001.106                                                                             | 5.01; SDG No.                                                                            | TON®) has completed<br>490-137586-1; Wilcox<br>TestAmerica Laboratorio                                                                   | Oil. Two samples                                                                  | for Work Order Number<br>were analyzed for Polynuclea<br>abers are listed below.                                                                                                                  |
|                                                                                               |                                                                                          | SAMPLE NUM                                                                                                                               | BERS                                                                              |                                                                                                                                                                                                   |
| Top Soil                                                                                      |                                                                                          | Backfill                                                                                                                                 |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          | <del></del>                                                                                                                              |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          | -                                                                                                                                        |                                                                                   |                                                                                                                                                                                                   |
|                                                                                               |                                                                                          |                                                                                                                                          |                                                                                   |                                                                                                                                                                                                   |
| USEPA National Functional<br>National Functional<br>Laboratory Program<br>(April, 2016), Qual | unctional Guide<br>al Guidelines f<br>m National Fu<br>ity Assurance/Ç<br>col for Holdin | elines for Organic Superfi<br>for Inorganic Superfund<br>nctional Guidelines for I<br>Quality Control Guidance<br>g Times, Blanks, and V | und Methods Data K<br>Data Review (Jan<br>High Resolution Su<br>for Removal Activ | tions were achieved, following<br>Review (January, 2017), USEPA<br>uary, 2017), USEPA Contrac<br>perfund Methods Data Review<br>ities (September, 2011), and/or<br>April 13, 1989). Specific data |
| REVIEWER                                                                                      | Gloria J. Swit                                                                           | talski                                                                                                                                   | DATE                                                                              | October 6, 2017                                                                                                                                                                                   |

Data Qualifier Definitions were supplied by the Office of Solid Waste and Emergency Response (September 1989) and are included in the Functional Guidelines. Data qualifiers may be combined (UJ, QJ) with the corresponding combination of meanings. Additional qualifiers may be added to provide additional, more specific information (JL, UB, QJK), modifying the meaning of the primary qualifier. Addition qualifiers utilized by WESTON are H, L, K, B, and Q.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation or detection limit, which has been adjusted for sample weight/sample volume, extraction volume, percent solids, sample dilution or other analysis specific parameters.

An additional qualifier, "B", may be appended to indicate that while the analyte was detected in the sample, the presence of the analyte may be attributable to blank contamination and the analyte is therefore considered undetected with the sample detection or quantitation limit for the analyte being elevated.

J - The analyte was analyzed for, but the associated numerical value may not be consistent with the amount actually present in the environmental sample or may not be consistent with the sample detection or quantitation limit. The value is an estimated quantity. The data should be seriously considered for decision-making and are usable for many purposes.

An additional qualifier will be appended to the "J" qualifier that indicates the bias in the reported results:

- L Low bias
- H High bias
- K Unknown bias
- Q The reported concentration is less than the sample quantitation limit for the specific analyte in the sample.

- R Quality Control indicates that data are unusable for all purposes. The analyte was analyzed for, but the presence or absence of the analyte has not been verified. Resampling and reanalysis are necessary for verification to confirm or deny the presence of an analyte.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

#### PAH FRACTION EVALUATION

# 1. Analytical Method:

Samples were prepared and analyzed using the procedures specified in SW-846 Method 8270D Selective Ion Monitoring (SIM).

### 2. Holding Time:

The samples were received within the recommended  $\leq$ 6°C NFG limit. All samples were extracted within the required holding time of less than 7 days for waters and less than 14 days for solids/wastes after collection. Analysis of the samples was conducted within 40 days of extraction. No qualifications are placed on the data.

### 3. Tuning/Performance:

DFTPP tuning of the mass spectrometer(s) is not required when performing SIM. No qualifications are placed on the data.

#### 4. Initial Calibration:

All individual relative response factors (RRFs) and average RRFs for the initial calibration were greater than the compound dependent (see Table 34 of National Functional Guidelines) control limits. All percent relative standard deviations (%RSDs) were less than the compound dependent (see Table 34 of National Functional Guidelines) control limits or the correlation coefficient was > 0.990. No qualifications are placed on the data.

### 5. Continuing Calibration:

All individual RRFs for the initial calibration verification (ICV) and continuing calibration (CC) standards were greater than the compound dependent (see Table 34 of National Functional Guidelines) control limits. All percent differences (%Ds) were less than the compound dependent (see Table 34 of National Functional Guidelines) control limits. No qualifications are placed on the data.

#### 6. Blanks:

### A. Laboratory Blanks:

A method blank was prepared at the required frequency of every time samples were extracted for each matrix and concentration or every 20 samples whichever is greater. No target analytes were detected in the method blank at concentrations that warrant blank action. No qualifications are placed on the data.

#### B. Field Blanks:

No field or rinsate blank samples were submitted with this analytical package. No qualifications are placed on the data.

# 7. System Monitoring Compounds (SMC):

All recoveries of the system monitoring compounds (surrogates) were within the control limits provided. No qualifications are placed on the data.

### 8. Duplicates:

### A. Laboratory Duplicate Analysis:

Sample Backfill underwent MS/MSD analysis for the solid matrix. The relative percent difference (RPD) values for the duplicate sample analysis are less than 20% for aqueous samples and less than 35% for solid samples for concentrations greater than five times the reporting limit (RL). For sample concentrations less than five times the RL, the QC criteria are within  $\pm$  the RL for the aqueous matrix or  $\pm$  two times the RL for the solid matrix. All QC criteria were met. No qualifications are applied to the data.

#### B. Field Duplicate Analysis:

No field duplicate samples were submitted with this analytical package. No qualifications are placed on the data.

### 9. Matrix Spike/Matrix Spike Duplicate (MS/MSD):

Sample Backfill underwent MS/MSD analysis for the solid matrix. Recoveries of all spiked analytes were within the control limits provided in both the matrix spike and matrix spike duplicate. No qualifications are applied to the data.

#### 10. Internal Standards:

Areas of the six internal standards were within the control limits of a factor of 2 (-50% to +100%) and retention times were within 30 seconds from the associated 12 hour calibration standard. No qualifications are placed on the data.

#### 11. Laboratory Control Sample (LCS):

The laboratory analyzed an LCS and recoveries were within the control limits provided. No qualifications are placed on the data.

### 12. Target Compound Identification:

All target compounds reported by the laboratory met identification criteria of relative retention times (RRT) within 0.06 RRT units of the 12 hour standard and that all ions present in the standard mass spectrum were present in the sample mass spectrum and the abundance of these ions agreed within  $\pm$  20% of the standard. No qualifications are placed on the data.

### 13. Target Compound Quantitation and Reporting Limits:

Concentrations of all reported compounds were correctly calculated.

Reported concentrations less than the reporting limit (RL) qualified "J" by the laboratory are qualified "JQ" to indicate that the result is less than the RL but greater than the method detection limit (MDL).

### 14. Laboratory Contact:

No laboratory contact was required.

### 15. Overall Assessment

Reported concentrations less than the RL qualified "J" by the laboratory are qualified "JQ" to indicate that the result is less than the RL but greater than the MDL.

| SITE NAME                                                                                                                       | Wilcox Oil                                                       |                                                    |                                                    |                                                |                                      |                                         |                                   |                                      |                                              |                                        |                                                 |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|-------------------------------------------------|
| WORK ORDE                                                                                                                       | R NUMBER                                                         | 20406                                              | .012.001.10                                        | 65.01                                          | TDD                                  | NUMI                                    | BER                               | 00                                   | 01/17-06                                     | 5                                      |                                                 |
| PROJECT NUI                                                                                                                     | MBER                                                             | _                                                  |                                                    |                                                | SDG                                  | NUMI                                    | BER                               |                                      | 490-                                         | 137671-1                               | <u> </u>                                        |
| Weston Solutions<br>20406.012.001.106<br>Aromatic Hydrocar                                                                      | , Inc. (WE 5.01; SDG N bons (PAHs)                               | o. 490-13                                          | 37671-1; V                                         | Wilcox                                         | Oil. C                               | ne sai                                  | nple                              | was a                                | analyzed                                     | for Po                                 |                                                 |
|                                                                                                                                 |                                                                  |                                                    | SAMPLI                                             | E NUMI                                         | BERS                                 |                                         |                                   |                                      |                                              |                                        |                                                 |
| WOR006-48-17092                                                                                                                 | 8-56                                                             |                                                    |                                                    |                                                |                                      |                                         | _                                 |                                      |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  |                                                    |                                                    |                                                |                                      |                                         | _                                 |                                      |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  | _                                                  |                                                    |                                                |                                      |                                         | _                                 |                                      |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  | <del>-</del>                                       |                                                    |                                                |                                      |                                         | _                                 | -                                    |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  |                                                    |                                                    |                                                |                                      |                                         | _                                 |                                      |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  |                                                    |                                                    |                                                |                                      |                                         | _                                 |                                      |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  |                                                    |                                                    |                                                |                                      |                                         | _                                 | -                                    |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  |                                                    |                                                    |                                                |                                      |                                         | _                                 | -                                    |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  | <u>-</u>                                           |                                                    |                                                |                                      |                                         | _                                 |                                      |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  |                                                    |                                                    |                                                |                                      |                                         | _                                 |                                      |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  |                                                    |                                                    |                                                |                                      |                                         | _                                 |                                      |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  |                                                    |                                                    |                                                |                                      |                                         | _                                 |                                      |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  | <u> </u>                                           |                                                    |                                                |                                      |                                         | _                                 |                                      |                                              |                                        |                                                 |
|                                                                                                                                 |                                                                  | <u> </u>                                           |                                                    |                                                |                                      |                                         | <del>-</del>                      |                                      |                                              |                                        |                                                 |
| This data package v<br>USEPA National For<br>National Functional<br>Laboratory Program<br>(April, 2016), Quanthe Regional Proto | unctional Gui<br>al Guidelines<br>m National F<br>lity Assurance | delines for<br>for Inor<br>functional<br>Quality ( | r Organic<br>ganic Supe<br>Guideline<br>Control Gi | Superfund I<br>erfund I<br>es for H<br>uidance | nd Mei<br>Data T<br>igh Ri<br>for Re | thods L<br>Review<br>esolutio<br>emoval | Oata R<br>(Janı<br>on Su<br>Activ | Review<br>uary,<br>perfui<br>ities ( | y (Januar<br>2017), i<br>ad Metho<br>Septemb | y, 2017<br>USEPA<br>ods Dat<br>er, 201 | ), USEPA<br>Contracta<br>a Review<br>1), and/or |
| qualifications are li                                                                                                           | sted in the foll                                                 | lowing dis                                         | cussion.                                           |                                                |                                      |                                         |                                   |                                      |                                              |                                        |                                                 |
| REVIEWER                                                                                                                        | Gloria J. Sw                                                     | /italski                                           |                                                    |                                                |                                      | DA                                      | TE                                | _(                                   | October (                                    | 5, 2017                                |                                                 |

Data Qualifier Definitions were supplied by the Office of Solid Waste and Emergency Response (September 1989) and are included in the Functional Guidelines. Data qualifiers may be combined (UJ, QJ) with the corresponding combination of meanings. Additional qualifiers may be added to provide additional, more specific information (JL, UB, QJK), modifying the meaning of the primary qualifier. Addition qualifiers utilized by WESTON are H, L, K, B, and Q.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation or detection limit, which has been adjusted for sample weight/sample volume, extraction volume, percent solids, sample dilution or other analysis specific parameters.

An additional qualifier, "B", may be appended to indicate that while the analyte was detected in the sample, the presence of the analyte may be attributable to blank contamination and the analyte is therefore considered undetected with the sample detection or quantitation limit for the analyte being elevated.

J - The analyte was analyzed for, but the associated numerical value may not be consistent with the amount actually present in the environmental sample or may not be consistent with the sample detection or quantitation limit. The value is an estimated quantity. The data should be seriously considered for decision-making and are usable for many purposes.

An additional qualifier will be appended to the "J" qualifier that indicates the bias in the reported results:

- L Low bias
- H High bias
- K Unknown bias
- Q The reported concentration is less than the sample quantitation limit for the specific analyte in the sample.

- R Quality Control indicates that data are unusable for all purposes. The analyte was analyzed for, but the presence or absence of the analyte has not been verified. Resampling and reanalysis are necessary for verification to confirm or deny the presence of an analyte.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

#### PAH FRACTION EVALUATION

# 1. Analytical Method:

Samples were prepared and analyzed using the procedures specified in SW-846 Method 8270D Selective Ion Monitoring (SIM).

### 2. Holding Time:

The samples were received within the recommended  $\leq$ 6°C NFG limit. All samples were extracted within the required holding time of less than 7 days for waters and less than 14 days for solids/wastes after collection. Analysis of the samples was conducted within 40 days of extraction. No qualifications are placed on the data.

### 3. Tuning/Performance:

DFTPP tuning of the mass spectrometer(s) is not required when performing SIM. No qualifications are placed on the data.

#### 4. Initial Calibration:

All individual relative response factors (RRFs) and average RRFs for the initial calibration were greater than the compound dependent (see Table 34 of National Functional Guidelines) control limits. All percent relative standard deviations (%RSDs) were less than the compound dependent (see Table 34 of National Functional Guidelines) control limits or the correlation coefficient was > 0.990. No qualifications are placed on the data.

### 5. Continuing Calibration:

All individual RRFs for the initial calibration verification (ICV) and continuing calibration (CC) standards were greater than the compound dependent (see Table 34 of National Functional Guidelines) control limits. All percent differences (%Ds) were less than the compound dependent (see Table 34 of National Functional Guidelines) control limits. No qualifications are placed on the data.

#### 6. Blanks:

### A. Laboratory Blanks:

A method blank was prepared at the required frequency of every time samples were extracted for each matrix and concentration or every 20 samples whichever is greater. No target analytes were detected in the method blank at concentrations that warrant blank action. No qualifications are placed on the data.

#### B. Field Blanks:

No field or rinsate blank samples were submitted with this analytical package. No qualifications are placed on the data.

# 7. System Monitoring Compounds (SMC):

All recoveries of the system monitoring compounds (surrogates) were within the control limits with the following exceptions:

| SAMPLE ID             | SURROGATE        | %R  | QC LIMITS | QUALIFIER FLAG          |
|-----------------------|------------------|-----|-----------|-------------------------|
| WOR006-48-170928-56   | 2-Fluorobiphenyl | 121 | 29-120%   | JH*, detected compounds |
|                       | Nitrobenzene-d5  | 129 | 27-120%   |                         |
| WOR006-48-170928-56MS | 2-Fluorobiphenyl | 145 | 29-120%   | None, QC sample         |
|                       | Terphenyl-d14    | 122 | 27-120%   |                         |

<sup>\*2-</sup>Methylnaphthalene and 1-methylnaphthalene were ultimately qualified JK due to extremely low (<10%) or no (0%) MS/MSD recoveries as noted below.

#### 8. Duplicates:

### A. Laboratory Duplicate Analysis:

Sample WOR006-48-170928-56 underwent MS/MSD analysis for the solid matrix. The relative percent difference (RPD) values for the duplicate sample analysis are less than 20% for aqueous samples and less than 35% for solid samples for concentrations greater than five times the reporting limit (RL). For sample concentrations less than five times the RL, the QC criteria are within  $\pm$  the RL for the aqueous matrix or  $\pm$  two times the RL for the solid matrix. All QC criteria were met. No qualifications are applied to the data.

### B. Field Duplicate Analysis:

No field duplicate samples were submitted with this analytical package. No qualifications are placed on the data.

### 9. Matrix Spike/Matrix Spike Duplicate (MS/MSD):

Sample WOR006-48-170928-56 underwent MS/MSD analysis for the solid matrix. Recoveries of the following spiked analytes were outside of the control limits provided:

| SAMPLE ID           | ANALYTE             | %R/%R   | CONTROL<br>LIMITS | QUALIFIER<br>FLAG |
|---------------------|---------------------|---------|-------------------|-------------------|
| WOR006-48-170928-56 | 2-Methylnaphthalene | -26/-46 | 13-120%           | JL*               |
|                     | 1-Methylnaphthalene | 0.5/8   | 10-120%           | JL*               |

<sup>\*</sup>Ultimately qualified JK due to high surrogate recoveries as noted above.

#### 10. Internal Standards:

Areas of the six internal standards were within the control limits of a factor of 2 (-50% to +100%) and retention times were within 30 seconds from the associated 12 hour calibration standard. No qualifications are placed on the data.

### 11. Laboratory Control Sample (LCS):

The laboratory analyzed an LCS and recoveries were within the control limits provided. No qualifications are placed on the data.

### 12. Target Compound Identification:

All target compounds reported by the laboratory met identification criteria of relative retention times (RRT) within 0.06 RRT units of the 12 hour standard and that all ions present in the standard mass spectrum were

present in the sample mass spectrum and the abundance of these ions agreed within  $\pm$  20% of the standard. No qualifications are placed on the data.

### 13. Target Compound Quantitation and Reporting Limits:

Concentrations of all reported compounds were correctly calculated.

Reported concentrations less than the reporting limit (RL) qualified "J" by the laboratory are qualified "JQ" to indicate that the result is less than the RL but greater than the method detection limit (MDL).

The only sample was analyzed at a 5-fold dilution due to the high concentration of target analytes and/or due to the sample matrix. RL in this sample are elevated as a result of the dilution performed.

### 14. Laboratory Contact:

The laboratory was contacted on October 5, 2017 regarding an incorrect field ID. An acceptable response was received on October 5, 2017.

#### 15. Overall Assessment

Detected compound results in the only sample were estimated due to high surrogate recoveries.

Detected 2-methylnaphthalene and 1-methylnaphthalene results in the only sample were estimated due to no or extremely low (<10%) MS/MSD recoveries.

Reported concentrations less than the RL qualified "J" by the laboratory are qualified "JQ" to indicate that the result is less than the RL but greater than the MDL.

| SITE NAME                                                                             | Wilcox Oil                                                                                |                                                                                                                                          |                                                                                     |                                                                                                                                     |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| WORK ORDE                                                                             | R NUMBER                                                                                  | 20406.012.001.1065.01                                                                                                                    | TDD NUMBER                                                                          | 0001/17-065                                                                                                                         |
| PROJECT NUI                                                                           | MBER                                                                                      |                                                                                                                                          | SDG NUMBER                                                                          | 490-137762-1                                                                                                                        |
| 20406.012.001.106                                                                     | 5.01; SDG No.                                                                             | TON®) has completed<br>490-137762-1; Wilcox<br>TestAmerica Laboratoric                                                                   | Oil. Two samples                                                                    | for Work Order Numbe<br>were analyzed for Polynuclea<br>obers are listed below.                                                     |
|                                                                                       |                                                                                           | SAMPLE NUM                                                                                                                               | BERS                                                                                |                                                                                                                                     |
| WOR006-010-48-1                                                                       | 70929-56                                                                                  | WOR006-010-48-17                                                                                                                         | 70929-57                                                                            |                                                                                                                                     |
|                                                                                       |                                                                                           |                                                                                                                                          |                                                                                     |                                                                                                                                     |
|                                                                                       |                                                                                           |                                                                                                                                          |                                                                                     |                                                                                                                                     |
|                                                                                       |                                                                                           |                                                                                                                                          |                                                                                     |                                                                                                                                     |
|                                                                                       |                                                                                           |                                                                                                                                          |                                                                                     |                                                                                                                                     |
|                                                                                       |                                                                                           |                                                                                                                                          |                                                                                     |                                                                                                                                     |
|                                                                                       |                                                                                           | -                                                                                                                                        |                                                                                     |                                                                                                                                     |
|                                                                                       |                                                                                           |                                                                                                                                          |                                                                                     |                                                                                                                                     |
|                                                                                       |                                                                                           |                                                                                                                                          |                                                                                     |                                                                                                                                     |
|                                                                                       |                                                                                           |                                                                                                                                          |                                                                                     |                                                                                                                                     |
|                                                                                       |                                                                                           |                                                                                                                                          |                                                                                     | -                                                                                                                                   |
|                                                                                       |                                                                                           |                                                                                                                                          |                                                                                     |                                                                                                                                     |
|                                                                                       |                                                                                           |                                                                                                                                          |                                                                                     |                                                                                                                                     |
|                                                                                       |                                                                                           |                                                                                                                                          |                                                                                     |                                                                                                                                     |
| USEPA National F.<br>National Functional<br>Laboratory Program<br>(April, 2016), Quan | unctional Guide<br>al Guidelines f<br>m National Fu<br>lity Assurance/9<br>col for Holdin | elines for Organic Superfi<br>for Inorganic Superfund<br>nctional Guidelines for I<br>Quality Control Guidance<br>g Times, Blanks, and V | und Methods Data F<br>Data Review (Jan<br>High Resolution Su<br>I for Removal Activ | ations were achieved, following Review (January, 2017), USEPA Contractions (September, 2011), and/of April 13, 1989). Specific data |
| REVIEWER                                                                              | Gloria J. Swi                                                                             | talski                                                                                                                                   | DATE                                                                                | October 10, 2017                                                                                                                    |

Data Qualifier Definitions were supplied by the Office of Solid Waste and Emergency Response (September 1989) and are included in the Functional Guidelines. Data qualifiers may be combined (UJ, QJ) with the corresponding combination of meanings. Additional qualifiers may be added to provide additional, more specific information (JL, UB, QJK), modifying the meaning of the primary qualifier. Addition qualifiers utilized by WESTON are H, L, K, B, and Q.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation or detection limit, which has been adjusted for sample weight/sample volume, extraction volume, percent solids, sample dilution or other analysis specific parameters.

An additional qualifier, "B", may be appended to indicate that while the analyte was detected in the sample, the presence of the analyte may be attributable to blank contamination and the analyte is therefore considered undetected with the sample detection or quantitation limit for the analyte being elevated.

J - The analyte was analyzed for, but the associated numerical value may not be consistent with the amount actually present in the environmental sample or may not be consistent with the sample detection or quantitation limit. The value is an estimated quantity. The data should be seriously considered for decision-making and are usable for many purposes.

An additional qualifier will be appended to the "J" qualifier that indicates the bias in the reported results:

- L Low bias
- H High bias
- K Unknown bias
- Q The reported concentration is less than the sample quantitation limit for the specific analyte in the sample.

- R Quality Control indicates that data are unusable for all purposes. The analyte was analyzed for, but the presence or absence of the analyte has not been verified. Resampling and reanalysis are necessary for verification to confirm or deny the presence of an analyte.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

#### PAH FRACTION EVALUATION

# 1. Analytical Method:

Samples were prepared and analyzed using the procedures specified in SW-846 Method 8270D Selective Ion Monitoring (SIM).

### 2. Holding Time:

The samples were received within the recommended  $\leq$ 6°C NFG limit. All samples were extracted within the required holding time of less than 7 days for waters and less than 14 days for solids/wastes after collection. Analysis of the samples was conducted within 40 days of extraction. No qualifications are placed on the data.

### 3. Tuning/Performance:

DFTPP tuning of the mass spectrometer(s) is not required when performing SIM. No qualifications are placed on the data.

#### 4. Initial Calibration:

All individual relative response factors (RRFs) and average RRFs for the initial calibration were greater than the compound dependent (see Table 34 of National Functional Guidelines) control limits. All percent relative standard deviations (%RSDs) were less than the compound dependent (see Table 34 of National Functional Guidelines) control limits or the correlation coefficient was > 0.990. No qualifications are placed on the data.

### 5. Continuing Calibration:

All individual RRFs for the initial calibration verification (ICV) and continuing calibration (CC) standards were greater than the compound dependent (see Table 34 of National Functional Guidelines) control limits. All percent differences (%Ds) were less than the compound dependent (see Table 34 of National Functional Guidelines) control limits. No qualifications are placed on the data.

#### 6. Blanks:

### A. Laboratory Blanks:

A method blank was prepared at the required frequency of every time samples were extracted for each matrix and concentration or every 20 samples whichever is greater. No target analytes were detected in the method blank at concentrations that warrant blank action. No qualifications are placed on the data.

#### B. Field Blanks:

No field or rinsate blank samples were submitted with this analytical package. No qualifications are placed on the data.

# 7. System Monitoring Compounds (SMC):

All recoveries of the system monitoring compounds (surrogates) were within the control limits with the following exceptions:

| SAMPLE ID                  | SURROGATE       | %R  | QC LIMITS | QUALIFIER FLAG               |
|----------------------------|-----------------|-----|-----------|------------------------------|
| WOR006-010-48-170929-56    | Nitrobenzene-d5 | 260 | 27-120%   | None, only 1 out             |
| WOR006-010-48-170929-56MS  | Nitrobenzene-d5 | 215 | 27-120%   | None, only 1 out & QC sample |
| WOR006-010-48-170929-56MSD | Nitrobenzene-d5 | 357 | 27-120%   | None, only 1 out & QC sample |
| WOR006-010-48-170929-57    | Nitrobenzene-d5 | 607 | 27-120%   | None, only 1 out             |

### 8. Duplicates:

## A. Laboratory Duplicate Analysis:

Sample WOR006-010-48-170929-56 underwent MS/MSD analysis for the solid matrix. The relative percent difference (RPD) values for the duplicate sample analysis are less than 20% for aqueous samples and less than 35% for solid samples for concentrations greater than five times the reporting limit (RL). For sample concentrations less than five times the RL, the QC criteria are within  $\pm$  the RL for the aqueous matrix or  $\pm$  two times the RL for the solid matrix. QC criteria were met for the following compound:

| SAMPLE ID/MATRIX              | ANALYTE             | RPD | AFFECTED<br>SAMPLE      | QUALIFIER<br>FLAG |
|-------------------------------|---------------------|-----|-------------------------|-------------------|
| WOR006-010-48-170929-56/Solid | Naphthalene         | 50  | WOR006-010-48-170929-56 | None, sample ND   |
|                               | 2-Methylnaphthalene | 49  |                         | JK                |
|                               | 1-Methylnaphthalene | 45  |                         | JK                |

### B. Field Duplicate Analysis:

No field duplicate samples were submitted with this analytical package. No qualifications are placed on the data.

### 9. Matrix Spike/Matrix Spike Duplicate (MS/MSD):

Sample WOR006-010-48-170929-56 underwent MS/MSD analysis for the solid matrix. Recoveries of the following spiked analytes were outside of the control limits provided:

| SAMPLE ID               | ANALYTE                | %R/%R   | CONTROL<br>LIMITS | QUALIFIER<br>FLAG |
|-------------------------|------------------------|---------|-------------------|-------------------|
| WOR006-010-48-170929-56 | Acenaphthene           | OK/149  | 19-120%           | JH                |
|                         | Fluorene               | 180/221 | 20-120%           | None, sample ND   |
|                         | Indeno(1,2,3-cd)pyrene | 124/145 | 22-121%           | None, sample ND   |
|                         | Naphthalene            | OK/203  | 10-120%           | None, sample ND   |
|                         | Phenanthrene           | OK/133  | 21-122%           | JH                |

### 10. Internal Standards:

Areas of the six internal standards were within the control limits of a factor of 2 (-50% to +100%) and retention times were within 30 seconds from the associated 12 hour calibration standard with the following exceptions:

| SAMPLE ID                  | INTERNAL<br>STANDARD               | % AREA OF<br>12 HR STD | QUALIFIER FLAG * |
|----------------------------|------------------------------------|------------------------|------------------|
| WOR006-010-48-170929-56MSD | Dichlorobenzene-d4<br>Perylene-d12 | 48.6%<br>48.5%         | None, QC sample  |

| SAMPLE ID               | INTERNAL<br>STANDARD | % AREA OF<br>12 HR STD | QUALIFIER FLAG * |
|-------------------------|----------------------|------------------------|------------------|
| WOR006-010-48-170929-57 | Perylene-d12         | 46.5%                  | JH/UJ            |

<sup>\*</sup>Impacted compounds include benzo(a)pyrene; benzo(b)fluoranthene; benzo(g,h,i)perylene; benzo(k)fluoranthene; dibenz(a,h)anthracene; and indeno(1,2,3-cd)pyrene.

### 11. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD):

The laboratory analyzed an LCS/LCSD and recoveries and RPD were within the control limits provided. No qualifications are placed on the data.

### 12. Target Compound Identification:

All target compounds reported by the laboratory met identification criteria of relative retention times (RRT) within 0.06 RRT units of the 12 hour standard and that all ions present in the standard mass spectrum were present in the sample mass spectrum and the abundance of these ions agreed within  $\pm$  20% of the standard. No qualifications are placed on the data.

### 13. Target Compound Quantitation and Reporting Limits:

Concentrations of all reported compounds were correctly calculated.

Reported concentrations less than the reporting limit (RL) qualified "J" by the laboratory are qualified "JQ" to indicate that the result is less than the RL but greater than the method detection limit (MDL).

Both samples were analyzed at a 5-fold dilution due to the high concentration of target analytes and/or due to the sample matrix. RL in these samples are elevated as a result of the dilutions performed.

### 14. Laboratory Contact:

No laboratory contact was required.

#### 15. Overall Assessment

2-Methylnaphthalene and 1-methylnaphthalene results in one sample were estimated due to high MSD RPDs.

Acenaphthene and phenanthrene results in one sample were estimated due to high MS/MSD recoveries.

Benzo(a)pyrene; benzo(b)fluoranthene; benzo(g,h,i)perylene; benzo(k)fluoranthene; dibenz(a,h)anthracene; and indeno(1,2,3-cd)pyrene results in one sample were estimated due to low internal standard area recovery.

Reported concentrations less than the RL qualified "J" by the laboratory are qualified "JQ" to indicate that the result is less than the RL but greater than the MDL.

| SITE NAME Wilcox Oil                                                                                                                                                                                                |                                                                                                                                            |                                                                                        |                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| WORK ORDER NUMBER                                                                                                                                                                                                   | 20406.012.001.1065.01                                                                                                                      | TDD NUMBER                                                                             | 0001/17-065                                                                                                                   |
| PROJECT NUMBER                                                                                                                                                                                                      |                                                                                                                                            | SDG NUMBER                                                                             | 490-137889-1                                                                                                                  |
| Weston Solutions, Inc. (WES 20406.012.001.1065.01; SDG No. List (TAL) Metals and mercury by                                                                                                                         | 490-137889-1; Wilcox O                                                                                                                     | il. Four samples we                                                                    | re analyzed for Target Analyte                                                                                                |
|                                                                                                                                                                                                                     | SAMPLE NUM                                                                                                                                 | IBERS                                                                                  |                                                                                                                               |
| West-01                                                                                                                                                                                                             | West-02                                                                                                                                    |                                                                                        | North                                                                                                                         |
| South                                                                                                                                                                                                               |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
|                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                        |                                                                                                                               |
| This data package was validated to USEPA National Functional Guidelines J Laboratory Program National Fu (April, 2016), Quality Assurance/the Regional Protocol for Holdingualifications are listed in the follows: | elines for Organic Superfi<br>for Inorganic Superfund<br>inctional Guidelines for I<br>Quality Control Guidance<br>ig Times, Blanks, and V | und Methods Data R<br>Data Review (Janu<br>High Resolution Sup<br>e for Removal Active | Review (January, 2017), USEPA<br>uary, 2017), USEPA Contract<br>perfund Methods Data Reviev<br>ities (September, 2011), and/o |
| REVIEWER Gloria J. Swi                                                                                                                                                                                              | talski                                                                                                                                     | DATE                                                                                   | October 23, 2017                                                                                                              |

Data Qualifier Definitions were supplied by the Office of Solid Waste and Emergency Response (September 1989) and are included in the Functional Guidelines. Data qualifiers may be combined (UJ, QJ) with the corresponding combination of meanings. Additional qualifiers may be added to provide additional, more specific information (JL, UB, QJK), modifying the meaning of the primary qualifier. Addition qualifiers utilized by WESTON are H, L, K, B, and Q.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation or detection limit, which has been adjusted for sample weight/sample volume, extraction volume, percent solids, sample dilution or other analysis specific parameters.

An additional qualifier, "B", may be appended to indicate that while the analyte was detected in the sample, the presence of the analyte may be attributable to blank contamination and the analyte is therefore considered undetected with the sample detection or quantitation limit for the analyte being elevated.

J - The analyte was analyzed for, but the associated numerical value may not be consistent with the amount actually present in the environmental sample or may not be consistent with the sample detection or quantitation limit. The value is an estimated quantity. The data should be seriously considered for decision-making and are usable for many purposes.

An additional qualifier will be appended to the "J" qualifier that indicates the bias in the reported results:

- L Low bias
- H High bias
- K Unknown bias
- Q The reported concentration is less than the sample quantitation limit for the specific analyte in the sample.

- R Quality Control indicates that data are unusable for all purposes. The analyte was analyzed for, but the presence or absence of the analyte has not been verified. Resampling and reanalysis are necessary for verification to confirm or deny the presence of an analyte.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

#### METALS DATA EVALUATION

### 1. Analytical Method:

Samples were prepared and analyzed for ICP metals using the procedures specified in SW-846 Method 6020A. Samples were prepared and analyzed for mercury using the procedures specified in SW-846 Methods 7471B.

#### 2. Holding Times:

The samples were received above the recommended  $\leq$ 6°C NFG limit. Professional judgment was used to not qualify the sample results. All samples met established holding time criteria of 180 days for ICP metals and 28 days for mercury. No qualifications are placed on the data.

#### 3. Initial Calibration:

ICP initial calibration included a blank and three standards and initial calibration verification results fell within the control limits of 90% to 110% of the true values and mercury initial calibration included a blank and six standards and initial calibration verification results fell within the control limits of 85% to 115% values. No qualifications are placed on the data.

### 4. Continuing Calibration:

All ICP results fell within the control limits of 90% to 110% of the true values and all mercury results fell within the control limits of 85% to 115% of the true values. No qualifications are placed on the data.

### 5. CRDL Standard:

All results for the CRDL standard were within the control limits of 70% to 130% of the true values or the sample results were greater than the CRDL action level. No qualifications are placed on the data.

#### 6. Blanks:

### A. Laboratory Blanks:

A method blank was prepared at the required frequency of every time samples were prepared/digested for each matrix or every 20 samples whichever is greater. Target analytes were detected in the method and calibration blanks at concentrations that warrant blank action. Sample concentrations less than five times the highest analyte concentration reported in associated blanks are flagged UB (not detected, detection limit raised due to possible blank contamination). Details are noted below:

| INSTRUMENT ID DATE/TIME | ANALYTE/BLANK ID           | CONCENTRATION  | AFFECTED SAMPLES                       |
|-------------------------|----------------------------|----------------|----------------------------------------|
| ICPMS3 10/6/17 @11:05   | Iron/MB 490-465078/1-A     | 2.856 mg/kg    | All Solids, remove laboratory "B" flag |
| ICPMS2 10/4/2017 @12:40 | Antimony/CCB 490-465475/20 | 0.0008651 mg/L | UB, All Solids                         |

MB=Method Blank; CCB=Continuing Calibration Blank

#### B. Field Blanks:

No field or rinsate blank samples were submitted with this analytical package. No qualifications are placed on the data.

#### 7. ICP Interference Check:

All results for the interference check sample were within the control limits of 80% to 120% of the true values. No qualifications are placed on the data.

### 8. Laboratory Control Sample (LCS):

The recoveries for the LCS were within the control limits provided. No qualifications are placed on the

### 9. Duplicate Sample Analysis:

### A. Laboratory Duplicate Analysis:

No sample from this analytical package underwent matrix spike/matrix spike duplicate (MS/MSD) analysis. No qualifications are placed on the data.

### B. Field Duplicate Analysis:

No field duplicate samples were submitted with this analytical package. No qualifications are placed on the data.

### 10. Spiked Sample Analysis:

No sample from this analytical package underwent MS/MSD analysis. No qualifications are placed on the data.

### 11. ICP Serial Dilution:

No sample from this analytical package underwent serial dilution. No qualifications are placed on the data.

### 12. Sample Quantitation and Reporting Limits:

Concentrations of all reported analytes were correctly calculated.

Reported concentrations less than the reporting limit (RL) qualified "J" by the laboratory are qualified "JQ" to indicate that the result is less than the RL but greater than the method detection limit (MDL).

Manganese, selenium, and zinc in one sample were analyzed at a 5-fold dilution due to the high concentration of target analytes and/or due to the sample matrix. RL in this sample are as a result of the dilution performed.

# 13. Laboratory Contact

The laboratory was contacted on October 12, 2017 regarding the manganese percent recovery on a Form 2B-IN. An acceptable response was received on October 20, 2017.

### 14. Overall Assessment:

The antimony result in all solid samples was qualified due to method blank action.

Reported concentrations less than the RL qualified "J" by the laboratory are qualified "JQ" to indicate that the result is less than the RL but greater than the MDL.

| SITE NAME Wilcox Oil                                                                                                                                                                                                    |                                                                                                                                            |                                                                                       |                                                                                                                              |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| WORK ORDER NUMBER                                                                                                                                                                                                       | 20406.012.001.1065.01                                                                                                                      | TDD NUMBER                                                                            | 0001/17-065                                                                                                                  |  |
| PROJECT NUMBER                                                                                                                                                                                                          |                                                                                                                                            | SDG NUMBER                                                                            | 490-137889-1                                                                                                                 |  |
| Weston Solutions, Inc. (WES 20406.012.001.1065.01; SDG No Aromatic Hydrocarbons (PAHs) by                                                                                                                               | . 490-137889-1; Wilcox                                                                                                                     | Oil. Six samples v                                                                    | were analyzed for Polynuclea                                                                                                 |  |
|                                                                                                                                                                                                                         | SAMPLE NUM                                                                                                                                 | IBERS                                                                                 |                                                                                                                              |  |
| WOR006-012-36-171002-56                                                                                                                                                                                                 | WOR006-011-36-17                                                                                                                           | 71002-56                                                                              | West-01                                                                                                                      |  |
| West-02                                                                                                                                                                                                                 | North                                                                                                                                      |                                                                                       | South                                                                                                                        |  |
|                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                       | -                                                                                                                            |  |
|                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                       |                                                                                                                              |  |
|                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                       |                                                                                                                              |  |
|                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                       |                                                                                                                              |  |
|                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                       |                                                                                                                              |  |
|                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                       |                                                                                                                              |  |
|                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                       |                                                                                                                              |  |
|                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                       |                                                                                                                              |  |
|                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                       |                                                                                                                              |  |
|                                                                                                                                                                                                                         |                                                                                                                                            |                                                                                       |                                                                                                                              |  |
| This data package was validated to USEPA National Functional Guidelines of Laboratory Program National Fu (April, 2016), Quality Assurance/9 the Regional Protocol for Holdin qualifications are listed in the follows: | elines for Organic Superfi<br>for Inorganic Superfund<br>Inctional Guidelines for I<br>Quality Control Guidance<br>Ig Times, Blanks, and V | und Methods Data R<br>Data Review (Janu<br>High Resolution Sup<br>e for Removal Activ | Review (January, 2017), USEPA<br>uary, 2017), USEPA Contrac<br>perfund Methods Data Reviev<br>ities (September, 2011), and/o |  |
| REVIEWER Gloria J. Swi                                                                                                                                                                                                  | talski                                                                                                                                     | DATE                                                                                  | October 12, 2017                                                                                                             |  |

Data Qualifier Definitions were supplied by the Office of Solid Waste and Emergency Response (September 1989) and are included in the Functional Guidelines. Data qualifiers may be combined (UJ, QJ) with the corresponding combination of meanings. Additional qualifiers may be added to provide additional, more specific information (JL, UB, QJK), modifying the meaning of the primary qualifier. Addition qualifiers utilized by WESTON are H, L, K, B, and Q.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation or detection limit, which has been adjusted for sample weight/sample volume, extraction volume, percent solids, sample dilution or other analysis specific parameters.

An additional qualifier, "B", may be appended to indicate that while the analyte was detected in the sample, the presence of the analyte may be attributable to blank contamination and the analyte is therefore considered undetected with the sample detection or quantitation limit for the analyte being elevated.

J - The analyte was analyzed for, but the associated numerical value may not be consistent with the amount actually present in the environmental sample or may not be consistent with the sample detection or quantitation limit. The value is an estimated quantity. The data should be seriously considered for decision-making and are usable for many purposes.

An additional qualifier will be appended to the "J" qualifier that indicates the bias in the reported results:

- L Low bias
- H High bias
- K Unknown bias
- Q The reported concentration is less than the sample quantitation limit for the specific analyte in the sample.

- R Quality Control indicates that data are unusable for all purposes. The analyte was analyzed for, but the presence or absence of the analyte has not been verified. Resampling and reanalysis are necessary for verification to confirm or deny the presence of an analyte.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

#### PAH FRACTION EVALUATION

# 1. Analytical Method:

Samples were prepared and analyzed using the procedures specified in SW-846 Method 8270D Selective Ion Monitoring (SIM).

### 2. Holding Time:

The samples were received within the recommended  $\leq$ 6°C NFG limit. All samples were extracted within the required holding time of less than 7 days for waters and less than 14 days for solids/wastes after collection. Analysis of the samples was conducted within 40 days of extraction. No qualifications are placed on the data.

### 3. Tuning/Performance:

DFTPP tuning of the mass spectrometer(s) is not required when performing SIM. No qualifications are placed on the data.

#### 4. Initial Calibration:

All individual relative response factors (RRFs) and average RRFs for the initial calibration were greater than the compound dependent (see Table 34 of National Functional Guidelines) control limits. All percent relative standard deviations (%RSDs) were less than the compound dependent (see Table 34 of National Functional Guidelines) control limits or the correlation coefficient was > 0.990. No qualifications are placed on the data.

### 5. Continuing Calibration:

All individual RRFs for the initial calibration verification (ICV) and continuing calibration (CC) standards were greater than the compound dependent (see Table 34 of National Functional Guidelines) control limits. All percent differences (%Ds) were less than the compound dependent (see Table 34 of National Functional Guidelines) control limits. No qualifications are placed on the data.

#### 6. Blanks:

### A. Laboratory Blanks:

A method blank was prepared at the required frequency of every time samples were extracted for each matrix and concentration or every 20 samples whichever is greater. No target analytes were detected in the method blank at concentrations that warrant blank action. No qualifications are placed on the data.

#### B. Field Blanks:

No field or rinsate blank samples were submitted with this analytical package. No qualifications are placed on the data.

# 7. System Monitoring Compounds (SMC):

All recoveries of the system monitoring compounds (surrogates) were within the control limits with the following exceptions:

| SAMPLE ID               | SURROGATE        | %R  | QC LIMITS | QUALIFIER FLAG            |
|-------------------------|------------------|-----|-----------|---------------------------|
| WOR006-012-36-171002-56 | Nitrobenzene-d5  | 247 | 27-120%   | None, only 1 out & 10X DL |
| WOR006-011-36-171002-56 | Nitrobenzene-d5  | 255 | 27-120%   | None, only 1 out & 10X DL |
| West-01                 | 2-Fluorobiphenyl | 19  | 29-120%   | None, only 1 out & 10X DL |
| West-02                 | 2-Fluorobiphenyl | 19  | 29-120%   | None, 10X DL              |
|                         | Nitrobenzene-d5  | 17  | 27-120%   |                           |
| North                   | 2-Fluorobiphenyl | 6   | 29-120%   | None, 25X DL              |
|                         | Nitrobenzene-d5  | 5   | 27-120%   |                           |
|                         | Terphenyl-d4     | 8   | 13-120%   |                           |
| South                   | 2-Fluorobiphenyl | 14  | 29-120%   | None, 25X DL              |
|                         | Nitrobenzene-d5  | 13  | 27-120%   |                           |

DL=dilution

## 8. Duplicates:

### A. Laboratory Duplicate Analysis:

No sample from this analytical package underwent matrix spike/matrix spike duplicate (MS/MSD) analysis. No qualifications are placed on the data.

### B. Field Duplicate Analysis:

No field duplicate samples were submitted with this analytical package. No qualifications are placed on the data.

## 9. Matrix Spike/Matrix Spike Duplicate (MS/MSD):

No sample from this analytical package underwent MS/MSD analysis. No qualifications are placed on the data.

#### 10. Internal Standards:

Areas of the six internal standards were within the control limits of a factor of 2 (-50% to +100%) and retention times were within 30 seconds from the associated 12 hour calibration standard with the following exceptions:

| SAMPLE ID                     | INTERNAL<br>STANDARD                   | % AREA OF<br>12 HR STD | QUALIFIER FLAG *                           |
|-------------------------------|----------------------------------------|------------------------|--------------------------------------------|
| WOR006-012-36-171002-56 (10X) | Perylene-d12                           | 43.4%                  | None, affected compounds reported from 25X |
| WOR006-011-36-171002-56 (10X) | 1,4-Dichlorobenzene-d4<br>Perylene-d12 | 48.5%<br>42.1%         | None, affected compounds reported from 25X |
| West-01                       | Perylene-d12                           | 41.3%                  | JH                                         |
| West-02                       | Perylene-d12                           | 45.4%                  | JH/UJ                                      |

<sup>\*</sup>Impacted compounds include benzo(a)pyrene; benzo(b)fluoranthene; benzo(g,h,i)perylene; benzo(k)fluoranthene; dibenz(a,h)anthracene; and indeno(1,2,3-cd)pyrene.

### 11. Laboratory Control Sample (LCS):

The laboratory analyzed an LCS and recoveries were within the control limits provided. No qualifications are placed on the data.

### 12. Target Compound Identification:

All target compounds reported by the laboratory met identification criteria of relative retention times (RRT) within 0.06 RRT units of the 12 hour standard and that all ions present in the standard mass spectrum were present in the sample mass spectrum and the abundance of these ions agreed within  $\pm$  20% of the standard. No qualifications are placed on the data.

### 13. Target Compound Quantitation and Reporting Limits:

Concentrations of all reported compounds were correctly calculated.

Reported concentrations less than the reporting limit (RL) qualified "J" by the laboratory are qualified "JQ" to indicate that the result is less than the RL but greater than the method detection limit (MDL).

All samples were analyzed at a 10 or 25-fold dilution due to the high concentration of target analytes and/or due to the sample matrix. RL in these samples are elevated as a result of the dilutions performed.

### 14. Laboratory Contact:

No laboratory contact was required.

#### 15. Overall Assessment

Benzo(a)pyrene; benzo(b)fluoranthene; benzo(g,h,i)perylene; benzo(k)fluoranthene; dibenz(a,h)anthracene; and indeno(1,2,3-cd)pyrene results in two samples were estimated due to low internal standard area recoveries.

Reported concentrations less than the RL qualified "J" by the laboratory are qualified "JQ" to indicate that the result is less than the RL but greater than the MDL.

| SITE NAME Wilcox C                                                                                                                                     | )il                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| WORK ORDER NUMBE                                                                                                                                       | R 20406.012.001.1065.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TDD NUMBER                                                                                                                  | 0001/17-065                                                                                                             |
| PROJECT NUMBER                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SDG NUMBER                                                                                                                  | 490-137889-1                                                                                                            |
| 20406.012.001.1065.01; SI                                                                                                                              | WESTON®) has complet<br>DG No. 490-137889-1; Wounds (SVOCs) by TestAme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vilcox Oil. Four san                                                                                                        | nples were analyzed for                                                                                                 |
|                                                                                                                                                        | SAMPLE NUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MBERS                                                                                                                       |                                                                                                                         |
| West-01                                                                                                                                                | West-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | North                                                                                                                       |                                                                                                                         |
| South                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>                                                                                                                     |                                                                                                                         |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                         |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                         |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                         |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                         |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                         |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                         |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                         |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                         |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                         |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                         |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                         |
| following USEPA National (January, 2017), USEPA National (January, 2017), USEPA Contract L. Superfund Methods Data Removal Activities (September 1988) | idated to determine if Quant Functional Guidelines of the street of the | for Organic Superfun<br>is for Inorganic Superfinal Functional Guidel<br>nality Assurance/Quali<br>nal Protocol for Holding | d Methods Data Review und Data Review (January lines for High Resolution ty Control Guidance for Times, Blanks, and VOA |
| 1 16561 vation (April 13, 1905                                                                                                                         | 7. Specific data quanneation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | is are fisied in the folio                                                                                                  | wing discussion.                                                                                                        |
| REVIEWER Gloria J.                                                                                                                                     | Switalski                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE                                                                                                                        | October 23, 2017                                                                                                        |

Data Qualifier Definitions were supplied by the Office of Solid Waste and Emergency Response (September 1989) and are included in the Functional Guidelines. Data qualifiers may be combined (UJ, QJ) with the corresponding combination of meanings. Additional qualifiers may be added to provide additional, more specific information (JL, UB, QJK), modifying the meaning of the primary qualifier. Addition qualifiers utilized by WESTON are H, L, K, B, and Q.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation or detection limit, which has been adjusted for sample weight/sample volume, extraction volume, percent solids, sample dilution or other analysis specific parameters.

An additional qualifier, "B", may be appended to indicate that while the analyte was detected in the sample, the presence of the analyte may be attributable to blank contamination and the analyte is therefore considered undetected with the sample detection or quantitation limit for the analyte being elevated.

J - The analyte was analyzed for, but the associated numerical value may not be consistent with the amount actually present in the environmental sample or may not be consistent with the sample detection or quantitation limit. The value is an estimated quantity. The data should be seriously considered for decision-making and are usable for many purposes.

An additional qualifier will be appended to the "J" qualifier that indicates the bias in the reported results:

- L Low bias
- H High bias
- K Unknown bias
- Q The reported concentration is less than the sample quantitation limit for the specific analyte in the sample.

- R Quality Control indicates that data are unusable for all purposes. The analyte was analyzed for, but the presence or absence of the analyte has not been verified. Resampling and reanalysis are necessary for verification to confirm or deny the presence of an analyte.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

#### SVOC FRACTION EVALUATION

# 1. Analytical Method:

Samples were prepared and analyzed for SVOCs using the procedures specified in SW-846 Method 8270D.

### 2. Holding Time:

The samples were received within the recommended  $\leq$ 6°C NFG limit. All samples were extracted within the required holding time of less than 7 days for waters and less than 14 days for solids/wastes after collection. Analysis of the samples was conducted within 40 days of extraction. No qualifications are placed on the data.

## 3. Tuning/Performance:

DFTPP tuning of the mass spectrometer(s) was conducted at the required frequency and results were within the required criteria. No qualifications are placed on the data.

#### 4. Initial Calibration:

All individual relative response factors (RRFs) and average RRFs for the initial calibration were greater than the compound dependent (see Table 34 of National Functional Guidelines) control limits. All percent relative standard deviations (%RSDs) were less than the compound dependent (see Table 34 of National Functional Guidelines) control limits or the correlation coefficient was > 0.990. No qualifications are placed on the data.

### 5. Continuing Calibration:

All individual RRFs for the initial calibration verification (ICV) and continuing calibration (CC) standards were greater than the compound dependent (see Table 34 of National Functional Guidelines) control limits. All percent differences (%Ds) were less than the compound dependent (see Table 34 of National Functional Guidelines) control limits with the following exceptions:

| STANDARD TYPE | ANALYTE                                                | %D                   | QC LIMIT          | AFFECTED<br>SAMPLES | QUALIFIER FLAG    |
|---------------|--------------------------------------------------------|----------------------|-------------------|---------------------|-------------------|
| ICV           | Benzaldehyde<br>Hexachlorocyclopentadiene<br>Benzidine | 46.4<br>45.4<br>51.0 | ≤40<br>≤25<br>≤30 | All                 | UJK<br>UJK<br>UJK |

#### 6. Blanks:

### A. Laboratory Blanks

A method blank was prepared at the required frequency of every time samples were extracted for each matrix and concentration or every 20 samples whichever is greater. Target compounds were not detected in the blanks analyzed. No qualifications are placed on the data.

#### B. Field Blanks:

No field blank samples were submitted with this analytical package. No qualifications are placed on the data.

### 7. System Monitoring Compounds (SMC):

All recoveries of the system monitoring compounds (surrogates) were within the control limits with the following exceptions:

| SAMPLE ID | SURROGATE            | %R  | QC LIMITS | QUALIFIER FLAG |
|-----------|----------------------|-----|-----------|----------------|
| West-02   | 2-Fluorobiphenyl     | 10  | 29-120%   | None, 25X DL   |
|           | Nitrobenzene-d5      | 12  | 27-120%   |                |
|           | Phenol-d5            | 9   | 10-120%   |                |
| North     | 2-Fluorobiphenyl     | 3   | 29-120%   | None, 25X DL   |
|           | 2-Fluorophenol       | 9   | 10-120%   |                |
|           | Nitrobenzene-d5      | 3   | 27-120%   |                |
|           | Phenol-d5            | 4   | 10-120%   |                |
|           | Terphenyl-d4         | 5   | 13-120%   |                |
| South     | 2,4,6-Tribromophenol | 478 | 10-120%   | None, 200X DL  |

DL=dilution

# 8. Matrix Spike/Matrix Spike Duplicate (MS/MSD):

No sample from this analytical package underwent MS/MSD analysis for the soil matrix. No qualifications are placed on the data.

### 9. Duplicates:

## A. Laboratory Duplicate Analysis:

No sample from this analytical package underwent MS/MSD analysis for the soil matrix. No qualifications are placed on the data.

### B. Field Duplicate Analysis:

No field duplicate samples were submitted with this analytical package. No qualifications are placed on the data.

#### 10. Internal Standards:

Areas of the six internal standards were within the control limits of a factor of 2 (-50% to +100%) and retention times were within 30 seconds from the associated 12 hour calibration standard. No qualifications are placed on the data.

### 11. Laboratory Control Sample (LCS):

The laboratory analyzed LCS and recoveries were within the control limits provided. No qualifications are placed on the data.

## 12. Target Compound Identification:

All target compounds reported by the laboratory met identification criteria of relative retention times (RRT) within 0.06 RRT units of the 12 hour standard and that all ions present in the standard mass spectrum were present in the sample mass spectrum and the abundance of these ions agreed within  $\pm$  20% of the standard. No qualifications are placed on the data.

### 13. Target Compound Quantitation and Reporting Limits:

All samples were ND.

All samples were analyzed at a 25 or 200-fold dilution due to the high concentration of target analytes and/or due to the sample matrix. Reporting limits in these samples are elevated as a result of the dilutions performed.

### 14. Laboratory Contact:

The laboratory was contacted on October 12, 2017 regarding the lack of initial calibration data and why samples weren't analyzed at lesser dilutions. An acceptable response was received on October 20, 2017.

#### 15. Overall Assessment

Benzaldehyde, hexachlorocyclopentadiene, and benzidine results in all samples were estimated due to high initial calibration verification %D.